MA 16200 Quiz 20 Solutions

Approximating Functions with Polynomials, Properties of Power Series

1. Find the interval of convergence for the following series:
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Interval: (1, 3]
2. Find the radius of convergence for the following series:
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You should identify from the above power series that the center is a = —1. Therefore, the radius is

R=09.



3. Find the remainder term R,, in the nth-order Taylor polynomial centered at a = 0 for the given
function. Express the result for a general value of n.
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Now, use the remainder term to estimate the absolute error | f(—0.1) — pa(—0.1)|.
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Next, it is given that n = 2 and x = —0.1:
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@) (c) is maximized at ¢ = 0. Therefore M = 8. Thus
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