
107 學年度 (2018 年秋季班) 作業系統
學期群組計畫需求說明書*

๯⧸Ᏸ

ф࢘ਗஇϿ學࠮൹ਬ學系

jong@cs.nccu.edu.tw

需求書ۄ൰ќ期땻2018 年 9 א 18 ќ

1 ۡӜѽ঳

1. ۠組֍Ϭ 09/25 Жݫ 4 ѴҮӻՖњॴ༶ϵغԎ學期群組計畫ϡԏҝݦ׮땾

2. ॴ༶ѮԆغԎϡԏҝݦ׮ϥЩݘն԰݀ࡔ땾

3. Ԇ學ϡࢥѢϾڗ֍ Multi-Thread Synchronization ԰િ৺ϵՖњ群組計畫땾ਦҕϥझԎԆ߅ྨ
ҰࡷѢϡࣨޮަڪ Python, C, C++, Java, Scala, etc Չϧ݁௖ϺগоڗѢ Multi-Thread ϡિ
৺ॉ੔ଝЪ Semaphore, Lock, or Monitor Ӓ Synchronization Primitives ϵՖњ땾

4. Ԇϭ؝Ѣ֛׮Ћ Multi-Thread Synchronization Ԇ需Ϻӳށϡ entity (or object, thread) ϡ֍
Ѣ Possion Process ϵқ߱ߖЭ땹ЎϷϧ entity ԰ entity Үӟ֔֊系統ϡ܎ҷПӟ৏Вڬݿо
࣮᫸ڬ (Exponential Distribution)땾ҰҺЩт֍ՋӏϺڬݱтնڬϡӃޮϵલ֊ॉ੔ӳށϡ
Multi-Thread Щтт daemon ӃޮϥЋোᇺ॥Ӄޮϵൻӑ땾

5. 群組計畫оВҲةоԏҝةоዒ 85冘땹學期ߊܩዒ 15冘땹۠о組Ϭ 30оࣞࡗփП军न۬ 20о
٪Ҿࡗ 10 оࡗ农֍ۄ൰ܤޮࣨىדӃݚ๽ࣶ԰֛ۄ땾

6. 群組計畫ࣞփП땹֍明૝說明Ϫ需ϺЊ׃ Threads军նқཽۧԎ农т࢔ϻԺ ThreadsԆሺࢾϡ
ई֢԰ܺДВڈ땽ۣϤԺॄϭୁ࠮԰ॄӐնڬ (Shared Variables) ϧ需Ϻ Multi-Thread Syn-
chronization ϡ primitives ϵՖњӳށ땽

,組উঞϵୁ땻Berztiss׮* Alfs T., Synchronization of processes, Department of Computer Science, University of
Wollongong, Working Paper 82-11, 1982, 66p., http://ro.uow.edu.au/compsciwp/28



7. Multi-Thread Synchronization Ъࣨ۠׃ݐ Thread тӛއঽ޷ӳڗށ作ఁ߱԰؀Һ땹т૝ܖ
Multi-Thread Synchronization ϡڗ作ПЪࣨՓ૝Ѿೕ땹ҰنӄЩтЗϽԏҝةо 80冘땹࣮Ͼ
଀ӛއϡ說明ՖњՓ૝מ঍ڪѢۗถӰ (GUI) ঽ޷ЩтЗϽԏҝةоϡ 20冘땾ࣺۄם൰࿺ם
ԏҝ԰о႒ܺД৥ЩтӶԪо땹ာҰ֔ӑ Multi-Thread Multi-Core ԏҝ԰ີࡆॉۄчՐդХ
З԰ܧࢎ땹ڪѢ GitHub/Cloud Computing Platform ᶓӳ計畫ൻӑՖ߳度Ўࣚ֊࿺םԪоϡ
땾ץࡥ

8. 群組њ቙юϰϯњ቙ϡ࣮оՔϧׅњ቙ϡ 20冘Ћ群組њ቙ዒ 15冘땹ϰϯњ቙ዒ 5冘(Ⴡ땻ϰϯ
њ቙ݢ֍ץࢎѢ Github т࢔ Piazza ϡਲܧதࣛϵ૝ܖϰϯ៪ၘ度农땾

9. ֍۠組Ϭ 2018/12/01 ҮӻՖњ 30 оࣞࡗփП߭ϡ՞ڳ땹ॉϬ 2019/01/15军期எࡥќ农рѮ
期झӻՖњԆϭо組 30 оࣞࡗփ԰期எߊܩᰢ݀땾

10. 期எо組ࣞփϺ঳԰ޮݥߊܩ԰Ԇ需ڂ؅ՋϬ計畫ࣞփӻՂ਼땾



2 Multi-Thread ӳށϡ؝Ѣ֛׮
1. Tobacco Smokers (TS) Problem

Three smokers sit around a table. Each has a permanent supply of precisely one of three
resources, namely tobacco, cigarette papers, and matches, but is not permitted to give any of
this resource to a neighbor. An agent occasionally makes available a supply of two of the three
resources. The smoker who has the permanent supply of the remaining resource is then in a
position to make and smoke a cigarette. On finishing the cigarette this smoker signals the agent,
and the agent may then make again available a supply of some two resources.

The smokers are three threads, and the agent can be regarded as a set of three threads. As
regards the latter, either none or exactly two of them run at anyone time. The problem is to
have the six threads cooperate in such a way that deadlock is prevented, e.g., that when the
agent supplies paper and matches, it is indeed the smoker with the supply of tobacco who gets
both, instead of one or both of these resources being acquired by the other two smokers.

2. The Sleeping Barber (SB) Problem

The barber shop has m barbers with m barber chairs, and n chairs (m < n) for waiting
customers, if any, to sit in. If there are no customers present, a barber sits down in a barber
chair and falls asleep. When a customer arrives, he has to wake up a sleeping barber. If
additional customers arrive while all barbers are cutting customers’ hair, they either sit down
(if there are empty chairs) or leave the shop (if all chairs are full). The thread synchronization
problem is to program the barbers and the customers without getting into race conditions.

3. Readers and Writers (RW) Problem

Here one has a system of r readers and w writers that all access a common database (or some
other resource). A reader may share the resource with an unlimited number of other readers,
but a writer must be in exclusive control of the resource. We call this the RW problem. Two
additional constraints characterize variants of the problem. Find a solution to each of the
following RW1 and RW2 problem, which does not cause starvation of readers and writers.

(a) Problem RW1. As soon as a writer is ready to write, no new reader should get permission
to run. Starvation of readers is a possibility here.

(b) Problem RW2. No writer is permitted to start running if there are any waiting readers.
Here it is possible to starve the writers.



4. Elevator Customer Scheduler (ECS) Problem

You’ve been hired by the University to build a controller for an elevator, using semaphores or con-
dition variables. The elevator is represented as a thread; each student or faculty member is also
represented by a thread. In addition to the elevator manager, you need to implement the routines
called by the arriving student/faculty: ArrivingGoingFromTo(intatF loor, inttoF loor). This
should wake up the elevator, tell it the current floor a person is on, and wait until the elevator
arrives before telling it which floor to go to. The elevator is amazingly fast, but it is not instan-
taneous it takes only 100 ticks to go from one floor to the next. Use interrupt− > OneT ick())1

You assume that there’s only one elevator, and more than one person (there is no upper limit)
can be in the elevator at a time. The trivial solution of serving one person at a time and putting
others on hold, is not acceptable.

5. Banker’s Problem (BP)

A banker has a finite amount of capital, expressed in, say, kronor. The banker enters into
agreements with customers to lend money. A borrowing customer is a thread. The following
conditions apply:

(a) The thread is created when the customer specifies a “need”, i.e., a limit that his indebted-
ness will never be permitted to exceed.

(b) The thread consists of transactions, where a transaction is either the advance of a krona
by the banker to the customer, or the repayment of a krona by the customer to the banker.

(c) The thread ends when the customer repays the last krona to the banker, and it is understood
that this occurs within a finite time after the creation of the thread.

(d) Requests for an increase in a loan are always granted as long as the current indebtedness is
below the limit established at the creation of the thread, but the customer may experience
a delay between the request and the transfer of the money.

Here a means has to be found for the banker to determine whether the next payment of a krona
to a customer creates the risk of deadlock.

1Implement an “alarm clock” class. Threads call ”Alarm : GoToSleepFor(inthowLong)” to go to sleep for a period
of time. The alarm clock can be implemented using the hardware Timer device (cf. timer.h). When the timer interrupt
goes off, the Timer interrupt handler checks to see if any thread that had been asleep needs to wake up now. There is
no requirement that threads start running immediately after waking up; just put them on the ready queue after they
have waited for the approximately the right amount of time.



6. Swimming Pool (SP) Problem

The problem here is to synchronize the arrivals and departures at a swimming pool facility.
There are two classes of resources, both in limited supply, n dressing rooms (or cubicles) and k

baskets (where generally n < k). The thread that a bather goes through:

(a) Find available basket and cubicle.

(b) Change into swimwear and put one’s street clothes in the basket.

(c) Leave cubicle and deposit the basket with the attendant.

(d) Swim (the pool is assumed to have unlimited capacity).

(e) Collect one’s basket from the attendant.

(f) Find free cubicle and change back into street clothes.

To increase the degree of possible concurrency it helps to decompose these operations.
Thus (a) and (b) become:
a1. Find available cubicle
b1. Change into swimware
a2. Find available basket
b2. Put street clothes into basket

Similarly (f) becomes:
f1. Find free cubicle and empty the basket (thus making the basket available to someone else).
f2. Change into street clothes.

Now, however, it is possible to have deadlock: Arrivals occupy cubicles waiting for baskets
to become available, but in so doing lock out prospective departures from the cubicles, thus
preventing baskets from becoming available.



7. Single Lane Bridge (SLB) Problem

The problem is depicted in below figure. A bridge over a river is only wide enough to permit a
single lane of traffic. Consequently, cars can only move concurrently if they are moving in the
same direction. A safety violation occurs if two cars moving in different directions enter the
bridge at the same time.

In our concurrent programming model, each car is a thread and the problem is to ensure that
cars moving in different directions (eastbound and westbound) cannot concurrently access the
shared resource, i.e., the bridge. The car is moving fast, but it is not instantaneous it might
takes a random number of ticks to go from one side to the other. Again (Use interrupt –>
OneTick() ) to make the simulation more realistic, we must also ensure that cars moving in the
same direction cannot pass each other. The bridge is also not strong enough to hold more than
m cars at a time.

Find a solution to this problem which does not cause starvation. That is, cars that want to
get across should eventually get across. However, we want to maximize use of the bridge. Cars
should travel across to the maximum capacity of the bridge. If a car leaves the bridge going
east and there are no westbound cars, then the next eastbound car should be allowed to cross.
We don’t want a solution which moves cars across the bridge m at a time, i.e., eastbound cars
that are waiting should not wait until all m cars that are eastbound and crossing the bridge
have crossed before being permitted to cross.


