
1

Dynamic Memory Allocation

Anne Bracy
CS 3410
Computer Science
Cornell University

Note: these slides derive from those by Markus Püschel at CMU

2

Recommended Approach

while (TRUE) {
code a little;
test a little;

}

Get something that works!

“Premature Optimization is the Root of all Evil”
—Donald Knuth

3

Today
 Basic concepts
 Implicit free lists
 Explicit free lists
 Segregated free lists

4

Dynamic Memory Allocation

 Allocator maintains heap as collection of variable sized blocks,
which are either allocated or free

 Types of allocators
 Explicit allocator: application allocates and frees

 E.g., malloc and free in C
 Implicit allocator: application allocates, but does not free

 E.g. garbage collection in Java, ML, and Lisp

5

The malloc Package
#include <stdlib.h>

void *malloc(size_t size)
 Successful:

 Returns a pointer to a memory block of at least size bytes
(typically) aligned to 8-byte boundary

 If size == 0, returns NULL
 Unsuccessful: returns NULL (0) and sets errno

void free(void *p)
 Returns the block pointed at by p to pool of available memory
 p must come from a previous call to malloc or realloc

void *realloc(void *p, unsigned int new_block_size)
 changes size of a previously allocated block

6

malloc Example

void foo(int n, int m) {
int i, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i=0; i<n; i++)

p[i] = i;

/* Return p to the heap */
free(p);

}

7

Assumptions Made in This Lecture
 Memory is word addressed
 Each word can hold a pointer

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

8

Allocation Example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

9

Constraints
 Applications
 Can issue arbitrary sequence of malloc and free requests
 free request must be to a malloc’d block (if user breaks this rule, not
free‘s problem)

 Allocators
 Can’t control number or size of allocated blocks
 Must respond immediately to malloc requests

 i.e., can’t reorder or buffer requests
 Must allocate blocks from free memory

 i.e., can only place allocated blocks in free memory
 Must align blocks so they satisfy all alignment requirements

 8 byte alignment for GNU malloc (libc malloc) on Linux boxes
 Can manipulate and modify only free memory
 Can’t move the allocated blocks once they are malloc’d

 i.e., compaction is not allowed

10

Performance Goal #1: Throughput
 Given some sequence of malloc and free requests:
 R0, R1, ..., Rk, ... , Rn-1

 Maximize Throughput:
 Number of completed requests per unit time
 Example:

 5,000 malloc calls and 5,000 free calls in 10 seconds
 Throughput is 1,000 operations/second

11

Performance Goal #2: Memory Utilization
 Given some sequence of malloc and free requests:
 R0, R1, ..., Rk, ... , Rn-1

 Maximize Memory Utilization:
 Extra constraint for 3410 version: the heap does not grow!
 For a given task, how large a heap do you need to succeed
 Poor memory utilization caused by fragmentation

Maximizing throughput and peak memory utilization = HARD
 These goals are often conflicting

Only correct implementations will be tested
for utilization and correctness!

12

Internal Fragmentation
 For a given block, internal fragmentation occurs if payload (the

amount requested by the application) is smaller than block size

 Caused by
 Overhead of maintaining heap data structures
 Padding for alignment purposes
 Explicit policy decisions

(e.g., to return a big block to satisfy a small request)

 Depends only on the pattern of previous requests
 Thus, easy to measure

Payload Internal
fragmentation

Block

Internal
fragmentation

13

External Fragmentation
 Occurs when there is enough aggregate heap memory,

but no single free block is large enough

 Depends on the pattern of future requests
 Thus, difficult to measure

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)

14

Implementation Issues: the 5 Questions
1. Given just a pointer, how much memory do we free?

2. How do we keep track of the free blocks?

3. When allocating a structure that is smaller than the free
block it is placed in, what do we do with the extra space?

4. How do we pick a block to use for allocation? (if a few work)

5. How do we reinsert freed block?

15

Q1: Knowing How Much to Free
 Standard method
 Keep the length of a block in the word preceding the block.

 This word is often called the header field or header
 Requires an extra word for every allocated block

p0 = malloc(4)

p0

free(p0)

block size data

5

16

Q2: Keeping Track of Free Blocks
 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

5 4 26

5 4 26

17

Today
 Basic concepts
 Implicit free lists
 Explicit free lists
 Segregated free lists

18

Method 1: Implicit List
 For each block we need both size and allocation status
 Could store this information in two words: wasteful!

 Standard trick
 If blocks are aligned, some low-order address bits are always 0
 Instead of storing an always-0 bit, use it as a allocated/free flag
 When reading size word, must mask out this bit

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

0 0 a

Optional
padding

31 3 2 1 0

19

Detailed Implicit Free List Example

Start
of

heap

Double-word
aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded grey
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

Each box is 4 bytes.

20

Q4: Implicit List: Finding a Free Block
 First fit:
 Search list from beginning, choose first free block that fits:
 Linear time in total number of blocks (allocated and free)
 Can cause “splinters” (of small free blocks) at beginning of list

 Next fit:
 Like first fit, but search list starting where previous search finished
 Often faster than first fit: avoids re-scanning unhelpful blocks
 Some research suggests that fragmentation is worse

 Best fit:
 Search list, choose the best free block: fits, with fewest bytes left over
 Keeps fragments small—usually helps fragmentation
 Typically runs slower than first fit

21

Q3: Implicit List: Allocating in Free Block
Suppose we need to allocate 3 words

This is our free block of choice

Two options:
1. Allocate the whole block (internal fragmentation!)

2. Split the free block

3 4 26

4 24

p

23

3 4 26

p

22

Q5: Implicit List: Freeing a Block
 Simplest implementation: clear the “allocated” flag
 But can lead to “false fragmentation”

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it

23

Implicit List: Coalescing
 Join (coalesce) with next/previous blocks, if they are free
 Coalescing with next block

How do we coalesce with previous block?

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone

24

Implicit List: Bidirectional Coalescing
 Boundary tags [Knuth73]

 Replicate size/allocated word at “bottom” (end) of free blocks
 Allows us to traverse the “list” backwards, but requires extra space
 Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

25

Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

26

m1 1

Constant Time Coalescing (Case 1)

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1

27

m1 1

Constant Time Coalescing (Case 2)

m1 1
n+m2 0

n+m2 0

m1 1

m1 1
n 1

n 1
m2 0

m2 0

28

m1 0

Constant Time Coalescing (Case 3)

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

29

m1 0

Constant Time Coalescing (Case 4)

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

30

Disadvantages of Boundary Tags
 Internal fragmentation

 Can it be optimized?
 Which blocks need the footer tag?
 What does that mean?

31

Summary of Key Allocator Policies
 Placement policy:
 First-fit, next-fit, best-fit, etc.
 Tradeoffs: throughput vs. fragmentation
 Interesting observation: segregated free lists (more later) approximate

best fit placement policy without searching entire free list

 Splitting policy:
 When do we go ahead and split free blocks?
 How much internal fragmentation are we willing to tolerate?

 Coalescing policy:
 Immediate coalescing: coalesce each time free is called
 Deferred coalescing: improve performance by deferring until needed

 Coalesce as you scan the free list for malloc
 Coalesce when external fragmentation reaches some threshold

32

Implicit Lists: Summary
 Implementation: very simple
 Allocate cost:
 linear time worst case

 Free cost:
 constant time worst case
 even with coalescing

 Memory usage:
 will depend on placement policy (First-fit, next-fit or best-fit)

 Not used in practice for malloc/free (too slow)
 used in many special purpose applications

 Concepts of splitting & coalescing are general to all allocators

33

Today
 Basic concepts
 Implicit free lists
 Explicit free lists
 Segregated free lists

34

Keeping Track of Free Blocks

5 4 26

5 4 26

 Method 1: Implicit free list using length—links all blocks

 Method 2: Explicit free list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

35

Explicit Free Lists

 Maintain list(s) of free blocks, not all blocks
 “next” free block could be anywhere

 need to store forward/back pointers, not just sizes
 Still need boundary tags for coalescing
 Tracking free blocks  can use payload area

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

36

Explicit Free Lists
 Logically:

 Physically: blocks can be in any order

A B C

4 4 4 4 66 44 4 4

Forward
(next) links

Back (prev)
links

A BC

37

Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic

38

Freeing With Explicit Free Lists
 Insertion policy: Where do you put a newly freed block?
 LIFO (last-in-first-out) policy

 Insert freed block at the beginning of the free list
 Pro: simple and constant time
 Con: studies suggest fragmentation worse than addr-ordered

 Address-ordered policy
 Insert freed blocks so free list blocks always in address order:

addr(prev) < addr(curr) < addr(next)
 Con: requires search
 Pro: studies suggest fragmentation is lower than LIFO

39

Freeing With a LIFO Policy (Case 1)

 Insert the freed block at the root of the list

/

free()

/

Free
List

Root

Free
List

Root

Before

After

conceptual graphic

40

Freeing With a LIFO Policy (Case 2)

 Splice out predecessor block, coalesce both memory blocks,
and insert the new block at the root of the list

/

free()

/

Free
List

Root

Free
List

Root

Before

After

conceptual graphic

41

Freeing With a LIFO Policy (Case 3)

 Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

/

free()

/

Free
List

Root

Free
List

Root

Before

After

conceptual graphic

42

Freeing With a LIFO Policy (Case 4)

 Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

/

free()

/

Free
List

Root

Free
List

Root

Before

After

conceptual graphic

43

Explicit List Summary
 Comparison to implicit list:
 Allocate: linear in number of free blocks (instead of all blocks)

 Much faster when most of the memory is full
 more complicated allocate/free (needs to splice blocks in/out of list)
 extra space for the links (2 extra words needed for each block)

 Does this increase internal fragmentation?

 Most common use of linked lists is in conjunction with
segregated free lists
 Keep multiple linked lists of different size classes, or possibly for

different types of objects

44

Keeping Track of Free Blocks
 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

5 4 26

5 4 26

45

Today
 Basic concepts
 Implicit free lists
 Explicit free lists
 Segregated free lists

46

Segregated List (Seglist) Allocators
 Each size class of blocks has its own free list

 Often have separate classes for each small size
 For larger sizes: One class for each two-power size

1-2

3

4

5-8

9-inf

47

Seglist Allocator
 Given an array of free lists, each one for some size class

 To allocate a block of size n:
 Search appropriate free list for block of size m > n
 If found: split block, optionally place fragment on appropriate list
 If no block is found, try next larger class
 Repeat until block is found

 If no block found:
 Real World:

 Request additional heap memory from OS (using sbrk())
 Allocate block of n bytes from new memory
 Place remainder as a single free block in largest size class

 CS 3410:
 Return NULL

48

Seglist Allocator (cont.)
 To free a block:
 Coalesce and place on appropriate list (optional)

 Advantages of seglist allocators
 Higher throughput

 log time for power-of-two size classes
 Better memory utilization

 First-fit search of segregated free list approximates a best-fit
search of entire heap

 Extreme case: giving each block its own size class is equivalent to
best-fit

49

More Info on Allocators

 Bryant & O’Hallaron, “Computer Systems: A Programmer's
Perspective” Sections 9.9-9.13
 A great book about System Software

 D. Knuth, “The Art of Computer Programming”, 2nd edition,
Addison Wesley, 1973
 The classic reference on dynamic storage allocation

 Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.
 Comprehensive survey
 Available from CS:APP student site (csapp.cs.cmu.edu)

	Dynamic Memory Allocation�
	Recommended Approach
	Today
	Dynamic Memory Allocation
	The malloc Package
	malloc Example
	Assumptions Made in This Lecture
	Allocation Example
	Constraints
	Performance Goal #1: Throughput
	Performance Goal #2: Memory Utilization
	Internal Fragmentation
	External Fragmentation
	Implementation Issues: the 5 Questions
	Q1: Knowing How Much to Free
	Q2: Keeping Track of Free Blocks
	Today
	Method 1: Implicit List
	Detailed Implicit Free List Example
	Q4: Implicit List: Finding a Free Block
	Q3: Implicit List: Allocating in Free Block
	Q5: Implicit List: Freeing a Block
	Implicit List: Coalescing
	Implicit List: Bidirectional Coalescing
	Constant Time Coalescing
	Constant Time Coalescing (Case 1)
	Constant Time Coalescing (Case 2)
	Constant Time Coalescing (Case 3)
	Constant Time Coalescing (Case 4)
	Disadvantages of Boundary Tags
	Summary of Key Allocator Policies
	Implicit Lists: Summary
	Today
	Keeping Track of Free Blocks
	Explicit Free Lists
	Explicit Free Lists
	Allocating From Explicit Free Lists
	Freeing With Explicit Free Lists
	Freeing With a LIFO Policy (Case 1)
	Freeing With a LIFO Policy (Case 2)
	Freeing With a LIFO Policy (Case 3)
	Freeing With a LIFO Policy (Case 4)
	Explicit List Summary
	Keeping Track of Free Blocks
	Today
	Segregated List (Seglist) Allocators
	Seglist Allocator
	Seglist Allocator (cont.)
	More Info on Allocators

