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Recommended Approach

while (TRUE) {
code a little;
test a little;

}

Get something that works!

“Premature Optimization is the Root of all Evil” 
—Donald Knuth
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Today
 Basic concepts
 Implicit free lists
 Explicit free lists
 Segregated free lists
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Dynamic Memory Allocation

 Allocator maintains heap as collection of variable sized blocks, 
which are either allocated or free

 Types of allocators
 Explicit allocator:  application allocates and frees

 E.g.,  malloc and free in C
 Implicit allocator: application allocates, but does not free

 E.g. garbage collection in Java, ML, and Lisp
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The malloc Package
#include <stdlib.h>

void *malloc(size_t size)
 Successful:

 Returns a pointer to a memory block of at least size bytes
(typically) aligned to 8-byte boundary

 If size == 0, returns NULL
 Unsuccessful: returns NULL (0) and sets errno

void free(void *p)
 Returns the block pointed at by p to pool of available memory
 p must come from a previous call to malloc or realloc

void *realloc(void *p, unsigned int new_block_size)
 changes size of a previously allocated block
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malloc Example

void foo(int n, int m) {
int i, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i=0; i<n; i++)

p[i] = i;

/* Return p to the heap */
free(p);

}
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Assumptions Made in This Lecture
 Memory is word addressed
 Each word can hold a pointer

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word
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Allocation Example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)
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Constraints
 Applications
 Can issue arbitrary sequence of malloc and free requests
 free request must be to a malloc’d block (if user breaks this rule, not 
free‘s problem)

 Allocators
 Can’t control number or size of allocated blocks
 Must respond immediately to malloc requests

 i.e., can’t reorder or buffer requests
 Must allocate blocks from free memory

 i.e., can only place allocated blocks in free memory
 Must align blocks so they satisfy all alignment requirements

 8 byte alignment for GNU malloc (libc malloc) on Linux boxes
 Can manipulate and modify only free memory
 Can’t move the allocated blocks once they are malloc’d

 i.e., compaction is not allowed
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Performance Goal #1: Throughput
 Given some sequence of malloc and free requests:
 R0, R1, ..., Rk, ... , Rn-1

 Maximize Throughput:
 Number of completed requests per unit time
 Example:

 5,000  malloc calls and 5,000 free calls in 10 seconds 
 Throughput is 1,000 operations/second
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Performance Goal #2: Memory Utilization
 Given some sequence of malloc and free requests:
 R0, R1, ..., Rk, ... , Rn-1

 Maximize Memory Utilization:
 Extra constraint for 3410 version: the heap does not grow!
 For a given task, how large a heap do you need to succeed
 Poor memory utilization caused by fragmentation

Maximizing throughput and peak memory utilization = HARD
 These goals are often conflicting

Only correct implementations will be tested 
for utilization and correctness!
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Internal Fragmentation
 For a given block, internal fragmentation occurs if payload (the 

amount requested by the application) is smaller than block size

 Caused by 
 Overhead of maintaining heap data structures
 Padding for alignment purposes
 Explicit policy decisions 

(e.g., to return a big block to satisfy a small request)

 Depends only on the pattern of previous requests
 Thus, easy to measure

Payload Internal 
fragmentation

Block

Internal 
fragmentation
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External Fragmentation
 Occurs when there is enough aggregate heap memory, 

but no single free block is large enough

 Depends on the pattern of future requests
 Thus, difficult to measure

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)
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Implementation Issues: the 5 Questions
1. Given just a pointer, how much memory do we free?

2. How do we keep track of the free blocks?

3. When allocating a structure that is smaller than the free 
block it is placed in, what do we do with the extra space?

4. How do we pick a block to use for allocation? (if a few work)

5. How do we reinsert freed block?
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Q1: Knowing How Much to Free
 Standard method
 Keep the length of a block in the word preceding the block.

 This word is often called the header field or header
 Requires an extra word for every allocated block

p0 = malloc(4)

p0

free(p0)

block size data

5
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Q2: Keeping Track of Free Blocks
 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key

5 4 26

5 4 26
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Today
 Basic concepts
 Implicit free lists
 Explicit free lists
 Segregated free lists
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Method 1: Implicit List
 For each block we need both size and allocation status
 Could store this information in two words: wasteful!

 Standard trick
 If blocks are aligned, some low-order address bits are always 0
 Instead of storing an always-0 bit, use it as a allocated/free flag
 When reading size word, must mask out this bit

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block  
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

0 0 a

Optional
padding

31                              3  2  1  0 



19

Detailed Implicit Free List Example

Start 
of 

heap

Double-word
aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded grey
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

Each box is 4 bytes.
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Q4: Implicit List: Finding a Free Block
 First fit:
 Search list from beginning, choose first free block that fits:
 Linear time in total number of blocks (allocated and free)
 Can cause “splinters” (of small free blocks) at beginning of list

 Next fit:
 Like first fit, but search list starting where previous search finished
 Often faster than first fit: avoids re-scanning unhelpful blocks
 Some research suggests that fragmentation is worse

 Best fit:
 Search list, choose the best free block: fits, with fewest bytes left over
 Keeps fragments small—usually helps fragmentation
 Typically runs slower than first fit
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Q3: Implicit List: Allocating in Free Block
Suppose we need to allocate 3 words

This is our free block of choice

Two options: 
1. Allocate the whole block (internal fragmentation!)

2. Split the free block

3 4 26

4 24

p

23

3 4 26

p
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Q5: Implicit List: Freeing a Block
 Simplest implementation: clear the “allocated” flag
 But can lead to “false fragmentation” 

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it



23

Implicit List: Coalescing
 Join (coalesce) with next/previous blocks, if they are free
 Coalescing with next block

How do we coalesce with previous block?

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone



24

Implicit List: Bidirectional Coalescing 
 Boundary tags [Knuth73]

 Replicate size/allocated word at “bottom” (end) of free blocks
 Allows us to traverse the “list” backwards, but requires extra space
 Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block  
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header
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Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4
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m1 1

Constant Time Coalescing (Case 1)

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1
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m1 1

Constant Time Coalescing (Case 2)

m1 1
n+m2 0

n+m2 0

m1 1

m1 1
n 1

n 1
m2 0

m2 0
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m1 0

Constant Time Coalescing (Case 3)

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1
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m1 0

Constant Time Coalescing (Case 4)

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0
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Disadvantages of Boundary Tags
 Internal fragmentation

 Can it be optimized?
 Which blocks need the footer tag?
 What does that mean?
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Summary of Key Allocator Policies
 Placement policy:
 First-fit, next-fit, best-fit, etc.
 Tradeoffs: throughput vs. fragmentation
 Interesting observation: segregated free lists (more later) approximate 

best fit placement policy without searching entire free list

 Splitting policy:
 When do we go ahead and split free blocks?
 How much internal fragmentation are we willing to tolerate?

 Coalescing policy:
 Immediate coalescing: coalesce each time free is called 
 Deferred coalescing: improve performance by deferring until needed

 Coalesce as you scan the free list for malloc
 Coalesce when external fragmentation reaches some threshold
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Implicit Lists: Summary
 Implementation: very simple
 Allocate cost: 
 linear time worst case

 Free cost: 
 constant time worst case
 even with coalescing

 Memory usage: 
 will depend on placement policy (First-fit, next-fit or best-fit)

 Not used in practice for malloc/free (too slow)
 used in many special purpose applications

 Concepts of splitting & coalescing are general to all allocators
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Today
 Basic concepts
 Implicit free lists
 Explicit free lists
 Segregated free lists
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Keeping Track of Free Blocks

5 4 26

5 4 26

 Method 1: Implicit free list using length—links all blocks

 Method 2: Explicit free list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key
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Explicit Free Lists

 Maintain list(s) of free blocks, not all blocks
 “next” free block could be anywhere

 need to store forward/back pointers, not just sizes
 Still need boundary tags for coalescing
 Tracking free blocks  can use payload area

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free
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Explicit Free Lists
 Logically:

 Physically: blocks can be in any order

A B C

4 4 4 4 66 44 4 4

Forward 
(next) links

Back (prev) 
links

A BC
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Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic
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Freeing With Explicit Free Lists
 Insertion policy: Where do you put a newly freed block?
 LIFO (last-in-first-out) policy

 Insert freed block at the beginning of the free list
 Pro: simple and constant time
 Con: studies suggest fragmentation worse than addr-ordered

 Address-ordered policy
 Insert freed blocks so free list blocks always in address order: 

addr(prev) < addr(curr) < addr(next)
 Con: requires search
 Pro: studies suggest fragmentation is lower than LIFO
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Freeing With a LIFO Policy (Case 1)

 Insert the freed block at the root of the list

/

free( )

/

Free 
List

Root

Free 
List

Root

Before

After

conceptual graphic
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Freeing With a LIFO Policy (Case 2)

 Splice out predecessor block, coalesce both memory blocks, 
and insert the new block at the root of the list

/

free( )

/

Free 
List

Root

Free 
List

Root

Before

After

conceptual graphic
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Freeing With a LIFO Policy (Case 3)

 Splice out successor block, coalesce both memory blocks and 
insert the new block at the root of the list

/

free( )

/

Free 
List

Root

Free 
List

Root

Before

After

conceptual graphic
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Freeing With a LIFO Policy (Case 4)

 Splice out predecessor and successor blocks, coalesce all 3 
memory blocks and insert the new block at the root of the list

/

free( )

/

Free 
List

Root

Free 
List

Root

Before

After

conceptual graphic
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Explicit List Summary
 Comparison to implicit list:
 Allocate: linear in number of free blocks (instead of all blocks)

 Much faster when most of the memory is full 
 more complicated allocate/free (needs to splice blocks in/out of list)
 extra space for the links (2 extra  words needed for each block)

 Does this increase internal fragmentation?

 Most common use of linked lists is in conjunction with 
segregated free lists
 Keep multiple linked lists of different size classes, or possibly for 

different types of objects



44

Keeping Track of Free Blocks
 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key

5 4 26

5 4 26
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Today
 Basic concepts
 Implicit free lists
 Explicit free lists
 Segregated free lists
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Segregated List (Seglist) Allocators
 Each size class of blocks has its own free list

 Often have separate classes for each small size
 For larger sizes: One class for each two-power size

1-2

3

4

5-8

9-inf
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Seglist Allocator
 Given an array of free lists, each one for some size class

 To allocate a block of size n:
 Search appropriate free list for block of size m > n
 If found: split block, optionally place fragment on appropriate list
 If no block is found, try next larger class
 Repeat until block is found

 If no block found:
 Real World:

 Request additional heap memory from OS (using sbrk())
 Allocate block of n bytes from new memory
 Place remainder as a single free block in largest size class

 CS 3410:
 Return NULL
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Seglist Allocator (cont.)
 To free a block:
 Coalesce and place on appropriate list (optional)

 Advantages of seglist allocators
 Higher throughput

 log time for power-of-two size classes
 Better memory utilization

 First-fit search of segregated free list approximates a best-fit 
search of entire heap

 Extreme case: giving each block its own size class is equivalent to 
best-fit
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More Info on Allocators

 Bryant & O’Hallaron, “Computer Systems: A Programmer's 
Perspective”  Sections 9.9-9.13
 A great book about System Software

 D. Knuth, “The Art of Computer Programming”, 2nd edition, 
Addison Wesley, 1973
 The classic reference on dynamic storage allocation

 Wilson et al, “Dynamic Storage Allocation: A Survey and 
Critical Review”, Proc. 1995 Int’l Workshop on Memory 
Management, Kinross, Scotland, Sept, 1995.
 Comprehensive survey
 Available from CS:APP student site (csapp.cs.cmu.edu)
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