
Hashing and sketching

1 The age of big data

An age of big data is upon us, brought on by a combination of:

• Pervasive sensing: so much of what goes on in our lives and in the world at large is now digitally
recorded.

• Good algorithms for dealing with data on this scale.

The algorithmic foundations of this area are still being built, and many of the most effective and widely-used
methods were developed quite recently, in the past decade or two.

2 Storing data for fast lookup

How can large databases—such as the medical records of all patients under a particular provider, or the web
pages crawled by a search engine, or the profiles of a social network’s users—be stored so as to allow records
to quickly be looked up, added, and deleted?

The formal setup is that each data item lies in some universe U that might be enormous, for instance,
{all possible social security numbers} or {all possible names} or {all valid URLs}. We have a large collection
of data from this universe, say x1, . . . , xn ∈ U . We would like to store these in such a way that:

1. The amount of space used is O(n), the best possible.

2. Some basic operations can be performed quickly, ideally in O(1) time:

• lookup(x): return record for x, if present

• insert(x): add a new entry associated with x

• delete(x): remove the entry associated with x

A traditional data structure for this problem is the binary search tree, in which the data is stored in lexico-
graphic order in a tree structure of depth O(log n). Using clever ideas like the “red-black rule” for keeping
the tree balanced, all lookups, inserts, and deletes can be handled in O(log n) time. Is there a faster—and
perhaps even easier—way?

2.1 Hashing with chaining

The idea here is to use a table of size m = O(n), call it T [1 · · ·m], and to use a hash function

h : U → [m]

that determines where each item gets stored. Item x ∈ U , for instance, ends up in T [h(x)], which we describe
by saying that it hashes to bucket h(x). Now, it is quite possible that many of our data points land in the
same bucket, so each entry T [i] actually points to a linked list of items that hash to i.
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The total amount of space used is O(n), as required. Lookups, inserts, and deletes are very easy and,
for an element x, take time proportional to the length of the linked list at T [h(x)], which we will sometimes
call the size of x’s bucket. What we need, therefore, is a hash function that spreads items out so that none
of the buckets is too heavily loaded. How can we pick such a function?

2.2 Picking a hash function

Say we are hashing people’s names. An easy hash function is simply the very first character, which has 26
possible values. For a larger hash table, we could use two characters (size 676), or three (size 17576), or
more. This scheme is convenient but is likely to produce very imbalanced buckets. How many names can
you think of that begin with xx, for instance?

With care, one should be able to handcraft a much better hash function. But this will require advance
knowledge of the distribution of words. This is because for any specific function that maps a large space U
of names into a table of a fixed size m = O(n), there is some collection of n names for which the function
performs abysmally—for instance, sending all of them to the same bucket. This is just the pigeonhole
principle at work. (Can you make a formal statement?)

An easier option is to use some randomness when choosing a hash function. Why would this help?
Well, imagine that we have an enormous collection of hash functions, each mapping U to [m], and that this
collection has the following key property:

For any given data set of n items, some of these functions might perform badly (as in inevitable,
given the reasoning above) but the vast majority perform well.

If we pick a function at random from this collection, then we are very likely to get one that is good for the
data we happen to have.

There are many ways of defining collections of hash functions that provably have this key property. Here’s
one.

• Take m to be a prime number. This is not too much of a constraint: we have efficient algorithms for
testing primality, and if we keep picking random numbers m ∈ [n, 2n] then after an average of O(n)
tries, we’ll find one that is prime.

• Let’s say m is b+ 1 bits long, that is, 2b ≤ m < 2b+1.

• Write elements of U in binary. This representation will be O(log |U |) bits long, which we can break
into b-bit chunks. In this way, any z ∈ U becomes a vector

z = (z(1), z(2), . . . , z(k))

where each z(i) is a number in the range [0, 2b − 1] and k = O((log |U |)/b).
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• A hash function is defined by numbers a1, . . . , ak ∈ {0, 1, . . . ,m− 1}:

h(z) = a1z
(1) + a2z

(2) + · · ·+ akz
(k) mod m.

By allowing all possible values of a1, . . . , ak, we get a collection of mk hash functions.

This collection of hash functions H has the following key properties, on account of which it is described as
universal:

1. Pick any location i and any item z ∈ U . If we pick a hash function h at random from H, then

Pr(h(z) = i) =
1

m
.

2. Pick any distinct items y, z ∈ U . If we pick a hash function h at random from H, then

Pr(h(y) = h(z)) =
1

m
.

(Can you prove these? Remember that any when m is prime, any number in {1, 2, . . . ,m − 1} is invertible
modulo m.)

We would expect these properties to hold if the hash function h were completely random, that is, if H
were the collection of all functions from U to [m], or put differently, if h were chosen by picking a random
destination for each x ∈ U separately. But completely random functions are impractical to use, because
they take O(|U |) space to write down. Instead, we have a family of very compact functions (each specified
by just k numbers), which has a lot of the same behavior.

The properties of universal collections of hash functions, like the one above, has been studied with great
care. We won’t get into these details. Instead, we’ll simply pretend that we are dealing with completely
random hash functions (that is, that H consists of all functions), which is accurate enough for our purposes.

So, let’s return to hashing with chaining. With a completely random hash function, what kind of lookup
time do we expect? What is the size of the largest bucket? The answer, it turns out, is O(log n), and is
obtained by thinking about the problem in a balls and bins framework.

2.3 Balls and bins

Suppose we have n bins and we throw n balls into these bins by picking a bin independently, and uniformly
at random, for each ball.

Some bins will get no balls while others might get many balls. The average number of balls per bin is
1. But what is the size of the largest bin? Well, this depends. If we are unlucky, all the balls might fall
in the same bin, in which case the answer is n. Or we could be extremely lucky and have every ball land
in a separate bin, in which case the answer is 1. But neither alternative is at all likely. The most likely
scenario—which occurs with probability at least 1 − 1/2100, say—is that the largest bin will have O(log n)
balls.

To see this, number the bins 1, 2, . . . , n and number the balls as well. Pick any bin, say bin i, and pick
any k balls S ⊂ [n], where k is a number between 1 and n. The probability that balls S all fall in bin i is
(1/n)k, since of the balls has exactly a 1/n chance of falling in the bin. Therefore,

Pr(bin i gets ≥ k balls) ≤
∑

S⊂[n],|S|=k

Pr(balls S fall in bin i) =

(
n

k

)
1

nk
.

Now we can take a union bound over all the bins.

Pr(some bin gets ≥ k balls) ≤
n∑
i=1

Pr(bin i gets ≥ k balls) ≤ n

(
n

k

)
1

nk
.
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For k = O(log n), this is less than 1/n100. We summarize this by saying the largest bin has size O(log n)
with high probability, meaning (informally) that the alternative is extremely unlikely.

Returning to hashing with chaining, the balls-and-bins analysis shows that with random hash functions,
the largest bucket will have O(log n) items in it, in which case the time for lookups, inserts, and deletes will
be at most this much. This is reassuring, but is it possible to get even faster lookup?

2.4 The power of two choices

Let’s return to the scenario with n balls and n bins, but this time, let’s place the balls in a slightly more
sophisticated way.

• For i = 1, 2, . . . n

– Pick two bins at random for the ith ball

– Place the ball in whichever of them is less full

It can be shown that, with high probability, the largest bin now has only O(log log n) balls in it. For instance,
if n is a billion, then log n ≈ 30 and log log n ≈ 5.

This immediately suggests a way to do hashing: pick two random hash functions h1, h2 : U → [n]. When
inserting a new element x, place it in either T [h1(x)] or T [h2(x)], whichever has the shorter linked list. And
when looking up x, search both lists.

With this little modification, lookups, inserts, and deletes are down to O(log log n). Is there any further
scope for improvement?

2.5 A two-level hashing scheme

Here’s an idea. So far we’ve been storing n items in a hash table of size n. What if we pick a bigger table, of
size m > n. How large does m have to be to avoid collisions altogether, so that each linked list has at most
one item? Is it enough to have m just slightly larger than n, like 2n?

In the language of balls and bins, we now have n balls and m bins. The probability that two specific
balls (say i and j) collide is 1/m (why?). So,

Pr(there is some collision) ≤
∑
i,j

Pr(balls i and j collide) =

(
n

2

)
1

m
≈ n2

2m
.

Setting m = n2 makes this probability less than 1/2. Of course, we’d like it to be considerably less likely,
but the message is clear: we need a very big hash table, of size O(n2), to avoid collisions altogether. This
space requirement is entirely impractical.

But the same idea becomes a lot more feasible if used for a second level of hashing. Here is the overall
scheme:

• There is a primary hash function h : U → [n] that sends each item in U to a location in the table
T [1 · · ·n].

• Let’s say we have ni items that are hashed to location i. Instead of storing these in a linked list, store
them in a second-level hash table, with hash function hi : U → [n2i ].

The lack of collisions makes for constant-time lookups, while the total space, O(n) for the primary table and
O(n21 + · · ·+ n2n) for the secondary table, can be shown to be O(n) with high probability.
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2.6 Deterministic versus randomized hashing schemes

The hashing schemes we’ve considered all have strong guarantees about lookup times that make no assump-
tions about the specific data items being stored. As we saw earlier, this is made possible by the randomness
in the choice of hash function: any deterministic choice is easily defeated.

As a consequence of randomization, some guarantees about effectiveness (lookup time and space usage)
hold only with high probability. One formal way to define this is to say that these guarantees fail with
probability at most 1/nc, for some constant c > 0. This implies, for instance, that the failure probability is
less than 1/2100, provided n is larger than some fixed constant. An event this unlikely can be disregarded
in practice.

For a concrete analogy, consider that there are much fewer than 2100 drops of water in the oceans. If you
and your friend each independently picked one drop of water at random, anywhere on earth, is it plausible
that you would pick exactly the same drop? Of course not. But it is a lot more probable than 1/2100.

3 Set membership using Bloom filters

Social networks like Facebook have billions of users, with new people joining all the time. How can they
rapidly check whether a suggested username is already taken?

Formally, we can think of this as a set membership problem. There is a universe U of possible items: all
possible usernames, for instance. We need to support two operations:

• insert(x): add an item x ∈ U

• lookup(x): check whether x has already been added, returning true or false

How can we implement these? Well, we could just use hashing with chaining, or one of the more sophisticated
variants that we have seen. They are reasonable solutions, but the storage per item consists of the item itself
plus pointers, and this can easily come out to a few hundred bits. We’d like something significantly more
streamlined.

Here’s an idea: use a hash table, but don’t actually store any of the items. Thus the table T [1 · · ·m]
doesn’t consist of pointers to linked lists, but instead just has Boolean entries, where T [i] = true means
“some item hashed to bucket i”. The implementation works as follows, given a hash function h : U → [m]:

• Initialize all entries of T [1 · · ·m] to false

• insert(x): set T [h(x)] = true

• lookup(x): return T [h(x)]

This seems a little too good to be true. Let’s take a closer look.
There certainly cannot be false negatives: once an item is stored, any subsequent lookup of that item

will return true. But there might be false positives. That is, it is possible for lookup(x) to return true

even if x has not been stored. In the context of our social network example, a false positive isn’t too bad—it
just means that a suggested new username will be denied even though it is not in use—but we would like to
reduce the probability of such mistake. How can we do this?

One strategy for a fix is simply to make m large. This will help, but we expressly want a small-
space solution. So instead, we use the most common strategy for reducing error in randomized algorithms:
repetition. The resulting data structure is called a Bloom filter.

The naive way to use repetition is to have k different tables, each of size m and each with its own hash
function. A more compact strategy is to have the k different hash functions h1, . . . , hk : U → [m], but to
store everything in the same table.

• Initialize all entries of T [1 · · ·m] to false

• insert(x): set entries T [h1(x)], . . . , T [hk(x)] to true
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• lookup(x): return T [h1(x)] ∧ · · · ∧ T [hk(x)]

In words, any x ∈ U corresponds to k buckets h1(x), . . . , hk(x) in the table. To insert an item, the corre-
sponding buckets are marked as occupied. And for lookup, an item is deemed to be present if and only if all
of the corresponding buckets are occupied.

As before, this scheme has no false negatives. It might have false positives, but we can reduce the
probability of these by setting k and m appropriately. As we will soon see, we can make the error probability
less than 1% by choosing m ≈ 9.6n, where n is the number of stored items: less than 10 bits of storage each!

Let’s briefly analyze this failure probability. Suppose that after storing n items, the fraction of the table
T [1 · · ·m] that is still unoccupied is q. What would we expect q to be, roughly? Fix any bucket in the table.
Assuming the hash functions are chosen completely at random,

Pr(this bucket is not hit by the first item) =

(
1− 1

m

)k
Pr(this bucket is not hit by any of the n items) =

(
1− 1

m

)kn
≈ e−kn/m,

where we have used the approximation ez ≈ 1 + z (for small |z|). Thus the expected value of q is about
e−kn/m, and by some more sophisticated arguments that we will not get into, it can be shown that q will be
close to this value with high probability.

Now, suppose we are asked to look up an item x that has not been stored. What is the probability of
making an error?

Pr(false positive on x) = Pr(buckets h1(x), . . . , hk(x) occupied)

= (1− q)k ≈ (1− e−kn/m)k.

To make this failure probability less than a tolerance value ε, we can choose

k =
m

n
ln 2

m =
1

(ln 2)2
· n · ln 1

ε

When we plug in ε = 0.01, we get the setting m ≈ 9.6n discussed earlier.

4 Similarity search using fingerprints

Many applications are centered around a large collection of documents: news articles, or web pages, or blog
posts. A common scenario is that a query document is subsequently presented, and the goal is to find items
in the collection that are very similar to this query. For instance, when crawling the web, it is essential
to detect when the current page is a near-duplicate of a page that has already been processed. Or, when
presenting results in information retrieval, documents that are very similar to each other should be clustered
together so that they don’t crowd out other alternatives.

There are several steps to defining this problem formally. First, what exactly is a document, and how is
it represented? Let’s fix an underlying vocabulary V , for instance the set of all English words. We will then
allow a document to be any sequence of items from this vocabulary, that is, any element of V ∗. A common
simplification is to treat a document as a bag of words: that is, to model it by the set of words it contains
and ignore the ordering of these words altogether. For a document x ∈ V ∗, write

words(x) = {w ∈ V : word w appears in x}.

Notice that this also disregards the number of occurrences of each word. For instance, x = “it was the

best of times, it was the worst of times” has

words(x) = {it, was, the, best, of, times, worst}.
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Given two documents x and y, we need a measure of how similar they are. There are many sensible
possibilities for this, but an especially popular choice is the Jaccard coefficient,

J(x, y) =
|words(x) ∩ words(y)|
|words(x) ∪ words(y)|

.

If x and y contain exactly the same words, though perhaps with differing multiplicities and orderings, then
J(x, y) = 1. On the other hand, if they have no words in common, then J(x, y) = 0. Two documents can
be considered near-duplicates when their Jaccard coefficient is very close to 1.

One way to answer a similarity query is to compute its Jaccard coefficient with every document in the
collection and return the closest match. Is there a simpler and faster alternative? We would like to avoid
dealing with documents in their entirety: can each document be replaced by a fingerprint, a short summary
that contains enough information for estimating similarities? One such scheme is known as the min-hash.

Here’s an idea for summarizing each document by just one word:

• Pick a random permutation (ordering) π of V . For instance, if V consists of animal names, then π
might be (horse, aardvark, jellyfish, dolphin, zebra, . . .).

• Represent any document x by

hπ(x) = the word in x that appears earliest in the ordering π.

For instance, if x is a story set in the ocean, then hπ(x) may well be dolphin.

This representation does capture some information about x, but seems very inadequate. What can be said
about it, exactly?

Pick any two documents x and y. Their hashes, hπ(x) and hπ(y), are equal if, of all the words in x or
in y, the one that appears earliest in π lies in both x and y. Thus, when the permutation π is chosen at
random,

Pr(hπ(x) = hπ(y)) =
|words(x) ∩ words(y)|
|words(x) ∪ words(y)|

= J(x, y).

In short: checking whether hπ(x) = hπ(y) is exactly like flipping a coin with heads probability J(x, y). If
we want to estimate J(x, y), all we need to do is to flip such a coin several times and take the average.

Here, then, is the full min-hashing scheme.

• Pick k random permutations π1, . . . , πk of V .

• Represent each document x by a fingerprint in V k:

h(x) = (hπ1
(x), . . . , hπk

(x))

• To estimate the similarity between documents x and y, use

J(x, y) ≈ # of positions on which h(x) and h(y) agree

k
.
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