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Abstract

In this paper, we develop improved techniques

for defending against adversarial examples at

scale. First, we implement the state of the art

version of adversarial training at unprecedented

scale on ImageNet and investigate whether it

remains effective in this setting—an important

open scientific question (Athalye et al., 2018).

Next, we introduce enhanced defenses using a

technique we call logit pairing, a method that en-

courages logits for pairs of examples to be sim-

ilar. When applied to clean examples and their

adversarial counterparts, logit pairing improves

accuracy on adversarial examples over vanilla ad-

versarial training; we also find that logit pairing

on clean examples only is competitive with ad-

versarial training in terms of accuracy on two

datasets. Finally, we successfully damage the

current state of the art defense against black box

attacks on Imagenet (Tramèr et al., 2018), drop-

ping its accuracy from 66.6% to 48.3%. We also

show that adversarial logit pairing is the state of

the art defense on Imagenet against PGD white

box attacks, with an accuracy improvement from

1.5% to 27.9%.

1. Introduction

Many deep learning models today are vulnerable to adver-

sarial examples, or inputs that have been intentionally op-

timized to cause misclassification. In the context of com-

puter vision, object recognition classifiers incorrectly rec-

ognize images that have been modified with small, often

imperceptible perturbations. It is important to develop mod-

els that are robust to adversarial perturbations for a variety

of reasons:

• so that machine learning can be used in situations
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where an attacker may attempt to interfere with the

operation of the deployed system,

• so that machine learning is more useful for model-

based optimization,

• to gain a better understanding of how to provide per-

formance guarantees for models under distribution

shift,

• to gain a better understanding of how to enforce

smoothness assumptions, etc.

In this paper, we investigate defenses against such adversar-

ial attacks. The contributions of this paper are the follow-

ing:

• We implement the state of the art version of adversar-

ial training at unprecedented scale and investigate its

effectiveness on the ImageNet dataset.

• We propose logit pairing, a method that encourages

the logits for two pairs of examples to be similar. We

propose two flavors of logit pairing: clean and adver-

sarial.

• We show that clean logit pairing is a method with

minimal computational cost that defends against PGD

black box attacks almost as well as adversarial train-

ing for two datasets.

• We show that adversarial logit pairing is a method

that leads to higher accuracy when subjected to white

box and black box attacks. We achieve the current

state of the art on black-box and white-box accuracies

with our model trained with adversarial logit pairing.

• We show that attacks constructed with our adversar-

ially trained models break the current state of the

art for black box defenses on ImageNet (Tramèr et al.,

2018). We then show that our models are resistant to

these attacks.

2. Definitions and threat models

Defense mechanisms are intended to provide security under

particular threat models. The threat model specifies the ca-

pabilities of the adversary. In this paper, we always assume

g.co/brainresidency
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the adversary is capable of forming attacks that consist of

perturbations of limited L∞ norm. This is a simplified task

chosen because it is more amenable to benchmark evalua-

tions. Realistic attackers against computer vision systems

would likely use different attacks that are difficult to charac-

terize with norm balls, such as Brown et al. (2017). We con-

sider two different threat models characterizing amounts of

information the adversary can have:

1. White box: the attacker has full information about the

model (i.e. knows the architecture, parameters, etc.).

2. Black box: the attacker has no information about the

model’s architecture or parameters, and no ability to

send queries to the model to gather more information.

3. The challenges of defending ImageNet

classifiers

Multiple methods to defend against adversarial ex-

amples have been proposed (Buckman et al., 2018;

Goodfellow et al., 2014; Kolter & Wong, 2017;

Madry et al., 2017; Papernot et al., 2016; Szegedy et al.,

2013; Tramèr et al., 2018; Xu et al., 2017). Recently,

Athalye et al. (2018) broke several defenses proposed for

the white box setting that relied on empirical testing to

establish their level of robustness. In our work we choose

to focus on Madry et al. (2017) because it is a method

that has withstood intense scrutiny even in the white box

setting. Athalye et al. (2018) endorsed Madry et al. (2017)

as the only such method that they were not able to break.

However, they observe that the defense from Madry et al.

(2017) has not been shown to scale to ImageNet. Another

reason to focus on Madry et al. (2017) rather than another

defense is that, in addition to the defenses recently broken

by Athalye et al. (2018), we additionally break a defense

that was proposed at ImageNet scale (Tramèr et al., 2018),

thus narrowing the set of candidate methods to study.

There are also certified defenses (Aditi Raghunathan,

2018; Aman Sinha, 2018; Kolter & Wong, 2017) that

provide guaranteed robustness, but the total amount of

robustness they guarantee is small compared to the amount

empirically claimed by Madry et al. (2017). This leaves

Madry et al. (2017) as a compelling defense to study

because it provides a large benefit that has withstood

intensive scrutiny.

In this paper, we implement the Madry et al. (2017) defense

at ImageNet scale for the first time and evaluate it using

the same attack methodology as has been used at smaller

scale. Our results provide an important conclusive answer

to an open question (Athalye et al., 2018) about whether

this defense strategy scales.

The defense used by Madry et al. (2017) consists

of using adversarial training (Goodfellow et al., 2014;

Szegedy et al., 2013) with an attack called “projected gradi-

ent descent” (PGD). Their PGD attack consists of initializ-

ing the search for an adversarial example at a random point

within the allowed norm ball, then running several itera-

tions of the basic iterative method (Kurakin et al., 2017b) to

find an adversarial example. The noisy initial point creates

a stronger attack than other previous iterative methods such

as BIM (Kurakin et al., 2017a), and performing adversarial

training with this stronger attack makes their defense more

successful (Madry et al., 2017). Kurakin et al. (2017a) ear-

lier reported that adversarial training with (non-noisy) BIM

adversarial examples did not result in general robustness to

a wide variety of attacks.

To the best of our knowledge, all previous attempted de-

fenses on ImageNet (Kurakin et al., 2017a; Tramèr et al.,

2018) report error rates of 99 percent on strong, multi-

step white box attacks. We, for the first time, scale the

Madry et al. (2017) defense to this setting and successfully

apply it. We also introduce an additional defense that im-

proves over this baseline and improves the amount of ro-

bustness achieved.

4. Methods

4.1. Adversarial training

Madry et al. (2017) suggests that PGD is a universal first

order adversary – in other words, developing robustness

against PGD attacks also implies resistance against many

other first order attacks. We use adversarial training with

PGD as the underlying basis for our methods:

argmin
θ

E(x,y)∈p̂data

(

max
δ∈S

L(θ, x+ δ, y)
)

(1)

where p̂data is the underlying training data distribution,

L(θ, x, y) is a loss function at data point x which has true

class y for a model with parameters θ, and the maximiza-

tion with respect to δ is approximated using noisy BIM.

We find that we achieve better performance not by liter-

ally solving the min-max problem described by Madry et al.

(2017). Instead, we train on a mixture of clean and ad-

versarial examples, as recommended by Goodfellow et al.

(2014); Kurakin et al. (2017a):

argmin
θ

[

E(x,y)∈p̂data

(

max
δ∈S

L(θ, x+ δ, y)
)

+

E(x,y)∈p̂data

(

L(θ, x, y)
)

]

(2)

This formulation helps to maintain good accuracy on

clean examples. We call this defense formulation mixed-
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minibatch PGD (M-PGD). We note that though we have

varied the defense slightly from the one used in Madry et al.

(2017), we still use the attack from Madry et al. (2017),

which is also endorsed by Athalye et al. (2018).

4.2. Logit pairing

We propose logit pairing, a method to encourage the logits

from two images to be similar to each other. For a model

that takes inputs x and computes a vector of logits z =
f(x), logit pairing adds a loss

λL (f(x), f(x′))

for pairs of training examples x and x
′, where λ is a coef-

ficient determining the strength of the logit pairing penalty

and L is a loss function encouraging the logits to be similar.

In this paper we use L2 loss for L, but other losses such as

L1 or Huber could also be suitable choices.

We explored two logit pairing techniques which are de-

scribed below. We found each of them to be useful: ad-

versarial logit pairing obtains the best-yet defense against

the Madry attack, while clean logit pairing, and a related

idea we call logit squeezing, provide competitive defenses

at significantly reduced cost.

4.2.1. ADVERSARIAL LOGIT PAIRING

Adversarial logit pairing (ALP) matches the logits from a

clean image x and its corresponding adversarial image x
′.

In traditional adversarial training, the model is trained to

assign both x and x
′ to the same output class label, but the

model does not receive any information indicating that x′ is

more similar to x than to another example of the same class.

ALP provides an extra regularization term encouraging sim-

ilar embeddings of the clean and adversarial versions of the

same example, helping guide the model towards better in-

ternal representations of the data.

Consider a model with parameters θ trained on a minibatch

M of clean examples {x(1), . . . ,x(m)} and corresponding

adversarial examples {x̃(1), . . . , x̃(m)}. Let f(x;θ) be the

function mapping from inputs to logits of the model. Let

J(M,θ) be the cost function used for adversarial training

(the cross-entropy loss applied to train the classifier on each

example in the minibatch, plus any weight decay, etc.). Ad-

versarial logit pairing consists of minimizing the loss

J(M,θ) + λ
1

m

m
∑

i=1

L
(

f(x(i);θ), f(x̃(i);θ)
)

.

4.2.2. CLEAN LOGIT PAIRING

In clean logit pairing (CLP), x and x
′ are two randomly

selected clean training examples, and thus are typically not

even from the same class. Let J (clean)(M,θ) be the loss

function used to train a classifier on a minibatch M, such

as a cross-entropy loss and any other loss terms such as

weight decay. Clean logit pairing consists of minimizing

the loss

J (clean)(M,θ) + λ
2

m

m

2
∑

i=1

L
(

f(x(i);θ), f(x(i+m

2
);θ)

)

.

We included experiments with clean logit pairing in order

to perform an ablation study, understanding the contribu-

tion of the pairing loss itself relative to the formation of

clean and adversarial pairs. To our surprise, inducing sim-

ilarity between random pairs of logits led to high levels of

robustness on MNIST and SVHN. This leads us to suggest

clean logit pairing as a method worthy of study in its own

right rather than just as a baseline. CLP is surprisingly ef-

fective and has significantly lower computation cost than

adversarial training or ALP.

We note that our best results with CLP relied on adding

Gaussian noise to the input during training, a standard

neural network regularization technique (Sietsma & Dow,

1991).

4.2.3. CLEAN LOGIT SQUEEZING

Since clean logit pairing led to high accuracies, we hy-

pothesized that the model was learning to predict logits

of smaller magnitude and therefore being penalized for be-

coming overconfident. To this end, we tested penalizing the

norm of the logits, which we refer to as “logit squeezing”

for the rest of the paper. For MNIST, it turned out that logit

squeezing gave us better results than logit pairing.

5. Adversarial logit pairing results and

discussion

5.1. Results on MNIST

Here, we first present results with adversarial logit pairing

on MNIST. We found that the exact value of the logit pair-

ing weight did not matter too much on MNIST as long as it

was roughly between 0.2 and 1. As long as some logit pair-

ing was added, the accuracy on adversarial examples im-

proved compared to vanilla adversarial training. We used a

final logit pairing weight of 1 in the values reported in Table

1. A weight of 1 corresponds to weighting both the adver-

sarial logit pairing loss and the cross-entropy loss equally.

We used the LeNet model as in Madry et al. (2017). We

also used the same attack parameters they used: total adver-

sarial perturbation of 76.5/255 (0.3), perturbation per step

of 2.55/255 (0.01), and 40 total attack steps with 1 random

restart. Similar to Madry et al. (2017), we generated black

box examples for MNIST by independently initializing and

adversarially training a copy of the LeNet model. We then
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used the PGD attack on this model to generate the black

box examples.

Method White Box Black Box Clean

M-PGD 93.2% 96.0% 98.5%

ALP 96.4% 97.5% 98.8%

Table 1. Comparison of adversarial logit pairing and vanilla adver-

sarial training on MNIST. All accuracies reported are for the PGD

attack.

As shown in Table 1, adversarial logit pairing achieves state

of the art on MNIST for the PGD attack. It improves white

box accuracy from 93.2% to 96.4%, and it improves black

box accuracy from 96.0% to 97.5%.

5.2. Results on SVHN

Method White Box Black Box Clean

M-PGD 44.4% 55.4% 96.9%

ALP 46.9% 56.2% 96.0%

Table 2. Comparison of adversarial logit pairing and vanilla adver-

sarial training on SVHN. All accuracies reported are for the PGD

attack.

Our PGD attack parameters for SVHN were as follows: a

total epsilon perturbation of 12/255, a per-step epsilon of

3/255, and 10 attack iterations.

For SVHN, we used the RevNet-9 model (Gomez et al.,

2017). RevNets are similar to ResNets in that they both use

residual connections, have similar architectures, and get

similar accuracies on multiple datasets. However, RevNets

have large memory savings compared to ResNets, as their

memory usage is constant and does not scale with the num-

ber of layers. Because of this, we used RevNets in order

to take advantage of larger batch sizes and quicker conver-

gence times.

Similar to MNIST, most logit pairing values from 0.5 to

1 worked, and as long as some logit pairing was added, it

greatly improved accuracies. However, making the logit

pairing values too large (e.g. anything larger than 2) did not

lead to any benefit and was roughly the same as vanilla ad-

versarial training. The final adversarial logit pairing weight

used in Table 2 was 0.5.

5.3. Results on ImageNet

5.3.1. MOTIVATION

Prior to this work, the standard baseline of PGD adversarial

training had not yet been scaled to ImageNet. Kurakin et

al. (2017a) showed that adversarial training with one-step

attacks confers robustness to other one-step attacks, but is

unable to make a difference with multi-step attacks. Train-

ing on multi-step attacks did not help either. Madry et al.

(2017) demonstrated successful defenses based on multi-

step noisy PGD adversarial training on MNIST and CIFAR-

10, but did not scale the process to ImageNet.

Here, we implement and scale the state of the art adver-

sarial training method from CIFAR-10 and MNIST to Ima-

geNet for the first time. We then implement our adversarial

logit pairing method for comparison.

5.3.2. IMPLEMENTATION DETAILS

To effectively scale up adversarial training with PGD to Im-

ageNet, we implemented synchronous distributed training

in Tensorflow with 53 workers: 50 were used for gradi-

ent aggregation, and 3 were left as backup replicas. Each

worker had 1 p100 card. We experimented with asyn-

chronous gradient updates, but we found that it led to stale

gradients and poor convergence. Additionally, we used 17

parameter servers that ran on CPUs. Large batch training

helped to scale up adversarial training as well: each replica

had a batch size of 32, for an effective batch size of 1600

images. We found that the total time to convergence was

approximately 6 days.

Similar to Kurakin et al. (2017a), we use the InceptionV3

model to implement adversarial training on ImageNet in

order to better compare results.

The PGD examples generated for the adversarial training

process had the following attack parameters:

• Size of total adversarial perturbation: 16/255 on a

scale of 0 to 1

• Size of total adversarial perturbation per step: 2/255
on a scale of 0 to 1

• Number of attack steps: 10

Like Szegedy et al. (2016), we used RMSProp for our op-

timizer, a starting learning rate of 0.045, a learning rate

decay every two epochs at an exponential rate of 0.94, and

momentum of 0.9.

5.3.3. TARGETED VS. UNTARGETED ATTACKS

Athalye et al. (2018) state that on ImageNet, accuracy on

targeted attacks is a much more meaningful metric to use

than accuracy on untargeted attacks. They state that this

is because untargeted attacks can cause misclassification of

very similar classes (e.g. images of two very similar dog

breeds), which is not meaningful. This is consistent with

observations by Kurakin et al. (2017a).

To that end, as Athalye et al. (2018) recommends, all accu-

racies we report on ImageNet are for targeted attacks, and

all adversarial training was done with targeted attacks.
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5.3.4. RESULTS AND DISCUSSION

Damaging Ensemble Adversarial Training. Ensemble

adversarial training (Tramèr et al., 2018) is the state of the

art for ImageNet black box attacks at 66.6% Top-1 black

box accuracy for InceptionV3. Here, we present a black

box attack that significantly damages the defense proposed

in Ensemble Adversarial Training.

We construct a black box attack by taking an ALP-trained

ImageNet model and constructing a transfer attack with

that model. Out of all of the attacks we tried, we

found that the iter ll attack was the strongest against EAT

Kurakin et al. (2017a). This attack reduces EAT’s 66.6%

Top-1 black box accuracy to 48%.

We suspect the reason this attack was so strong is because

it came from a model that had used multi-step adversarial

training. The attacks used in Tramèr et al. (2018) all came

from models that had been trained with one or two steps of

adversarial training. Black box results from Madry et al.

(2017) generally show that examples from adversarially

trained models are more likely to transfer to other models.

Thus, we recommend adversarial training with full itera-

tive attacks to provide a minimal level of white box and

black box robustness on ImageNet. When testing black

box attacks on ImageNet, we recommend using models that

have been adversarially trained with multiple steps to get a

sense of the strongest possible black box attack. Adver-

sarial training with one step attacks (even with ensemble

training) on ImageNet can be broken in both the white box

and black box case.

Results with adversarial logit pairing. We present our

main ImageNet results in Tables 3 and 4. All accuracies

reported refer to the worst case accuracies among all at-

tacks we tried in each of the two threat models we consider

(white box and black box). All accuracies reported are on

the ImageNet validation set.

White Box White Box

Method Top 1 Top 5

Regular training 0.7% 4.4 %

Tramèr et al. (2018) 1.3% 6.5 %

Kurakin et al. (2017a) 1.5% 5.5 %

M-PGD 3.9% 10.3%

ALP 27.9% 55.4%

Table 3. Comparison of adversarial logit pairing and vanilla adver-

sarial training on ImageNet. All accuracies reported are for white

box accuracy on the ImageNet validation set.

Firstly, our results show that PGD adversarial training can

lead to convergence on ImageNet when combined with

synchronous gradient updates and large batch sizes. Scal-

Black Box Black Box

Method Top 1 Top 5

M-PGD 36.5% 62.3%

ALP 46.7% 74.0%

Tramèr et al. (2018) 47.1% 74.3%

Table 4. Comparison of adversarial logit pairing and vanilla adver-

sarial training on ImageNet. All accuracies reported are for black

box accuracy on the ImageNet validation set.

ing adversarial training to ImageNet had not been pre-

viously shown before and had been an open question

(Athalye et al., 2018). Multi-step adversarial training does

show an improvement on white box accuracies from the

previous state-of-the-art, from 1.5% to 3.9%.

Secondly, we see that ALP further improves white box ac-

curacy from the adversarial training baseline – showing an

improvement from 3.9% to 27.9%. Adversarial logit pair-

ing also improves black box accuracy from the M-PGD

baseline, going from 36.5% to 46.7%.

Finally, these results show that adversarial logit pairing

achieves state of the art on ImageNet on white box attacks

– with a drastic 20x improvement over the previous state of

the art (Kurakin et al., 2017a; Tramèr et al., 2018). We do

this while still matching the black box results of Ensemble

Adversarial Training, the current state-of-the-art black box

defense (Tramèr et al., 2018).

We hypothesize that adversarial logit pairing works well

because it provides an additional prior that regularizes the

model toward a more accurate understanding of the classes.

If we train the model with only the cross-entropy loss, it

is prone to learning spurious functions that fit the training

distribution but have undefined behavior off the training

manifold. Adversarial training adds additional information

about the structure of the space. By adding an assump-

tion that small perturbations should not change the class,

regardless of direction, adversarial training introduces an-

other prior that forces the model to select functions that

have sensible behavior over a much larger region. How-

ever, adversarial training does not include any information

about the relationship between a clean adversarial example

and the adversarial version of the same example. In adver-

sarial training, we might take an image of a cat, perturb

it so the model thinks it is a dog, and then ask the model

to still recognize the image as a cat. There is no signal to

tell the model that the adversarial example is similar specif-

ically to the individual cat image that started the process.

Adversarial logit pairing forces the explanations of a clean

example and the corresponding adversarial example to be

similar. This is essentially a prior encouraging the model

to learn logits that are a function of the truly meaningful
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features in the image (position of cat ears, etc.) and ignore

the features that are spurious (off-manifold directions intro-

duced by adversarial perturbations). We can also think of

the process as distilling (Hinton et al., 2015) the knowledge

from the clean domain into the adversarial domain and vice

versa.

Similar to the dip in clean accuracy on CIFAR-10 reported

by Madry et al. (2017), we found that our models have a

slight dip in clean accuracy to 72%. However, we believe

this is outweighed by the large gains in adversarial accura-

cies.

5.3.5. COMPARISON OF DIFFERENT ARCHITECTURES

Model architecture plays a role in adversarial robustness

(Cubuk et al., 2017), and models with higher capacities

tend to be more robust (Kurakin et al., 2017a; Madry et al.,

2017). Since ImageNet is a particularly challenging dataset,

we think that studying different model architectures in con-

junction with adversarial training would be valuable. In

this work, we primarily studied InceptionV3 to offer bet-

ter comparisons to previous literature. With the rest of our

available computational resources, we were able to study

an additional model (ResNet-101) to see if residual con-

nections impacted adversarial robustness. We used ALP to

train the models, and results are reported in Table 6.

Method White Box Top 1 White Box Top 5

InceptionV3 27.9% 55.4%

ResNet-101 30.2% 55.8%

Table 5. Comparison of InceptionV3 and ResNet101 on Ima-

geNet. All accuracies reported are for white box accuracy on

the ImageNet validation set.

Method Black Box Top 1 Black Box Top 5

InceptionV3 46.7% 74.0%

ResNet-101 36.0% 62.2%

Table 6. Comparison of InceptionV3 and ResNet101 on Ima-

geNet. All accuracies reported are for black box accuracy on

the ImageNet validation set.

As part of our ongoing and future work, we plan to fur-

ther explore model architecture choice with more computa-

tional resources.

5.4. Clean logit pairing results

We experimented with clean logit pairing on MNIST, and

we found that it gave surprisingly high results on white

box and black box accuracies. As mentioned in our meth-

ods section, we augmented images with Gaussian noise

first and then applied clean logit pairing or logit squeezing.

Logit squeezing resulted in slightly higher PGD accuracies

than CLP (detailed in Figure 1). Table 7 contains our fi-

nal MNIST results on clean logit squeezing. For evaluation

with PGD, we used the same attack parameters as our eval-

uation for adversarial logit pairing.

Method White box Black box Clean

M-PGD 93.2% 96.0% 98.8%

Logit squeezing 86.4% 96.8% 99.0%

Table 7. Comparison of clean logit squeezing and vanilla adver-

sarial training on MNIST. All accuracies reported are for the PGD

attack.

As Table 7 shows, clean logit squeezing is competitive with

adversarial training, despite the large reduction in computa-

tional cost.

We also experimented with changing the weight of logit

pairing and logit squeezing to see if it acts as a controllable

parameter, and results are in Figure 1.

One thing to note about Figure 1 is that simply augmenting

images with Gaussian noise is enough to bring up PGD ac-

curacy to around 25 % – about 2.5 times better than guess-

ing at random. We would like to emphasize that the noise

was added during training time, not test time. Noise and

other randomized test time defenses have been shown to be

broken by Athalye et al. (2018). Going from nearly 0 per-

cent PGD accuracy to 25 percent with just Gaussian noise

suggests that there could be other simple changes to train-

ing procedures that result in better robustness against at-

tacks.
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The below table reports results on SVHN with the PGD

attack. Below are the attack parameters used:

• Size of total adversarial perturbation: 12/255 on a

scale of 0 to 1

• Size of total adversarial perturbation per step: 3/255
on a scale of 0 to 1

• Number of attack steps: 10

Method White Box Black Box Clean

M-PGD 44% 55% 97%

CLP 33% 45% 96%

Table 8. Clean logit pairing results on SVHN.

Method White Box Black Box Clean

EAT 1.3% 48.3% 75.8%

CLP 33% 45% 96%

Table 9. Clean logit pairing results on ImageNet.

As the above tables show, clean logit pairing is competitive

with adversarial training for black box results, despite the

large reduction in computational cost. Adversarial training

with multi-step attacks scales with the number of steps per

attack because full backpropagation is completed with each

attack step. In other words, if the normal training time of a

model is N, adversarial training with k steps per attack will

roughly cause the full training time of the model to be kN.

In contrast, the cost of CLP in terms of floating point oper-

ations and memory consumption is O(1) in the sense that

it does not scale with the number or size of hidden layers

in the model, input image size, or number of attack steps.

It does scale with the number of logits, but this is negligi-

ble compared to the other factors. Typically the number

of logits is determined by the task (10 for CIFAR-10, 100

for ImageNet) and remains fixed, while other factors like

model size are desirable to increase. For example, binary

classification is a common task in many real world applica-

tions like spam and fraud detection.

Moreover, CLP requires only one line of code in Tensor-

flow and is simple to implement.

We hope that CLP points the way to further effective de-

fenses that are essentially free. Defenses with high compu-

tational cost are less likely to be adopted and less feasible

for institutions with fewer resources to adopt. The future of

machine learning security is much brighter if security can

be accomplished without a major tradeoff against training

efficiency.

6. Comparison to other possible approaches

Logit pairing is similar to two other approaches that have

been previously shown to improve adversarial robustness:

label smoothing and mixup.

Label smoothing (Szegedy et al., 2016) consists of train-

ing a classifier using soft targets for the cross-entropy loss

rather than hard targets. The correct class is given a tar-

get probability of 1 − δ and the remaining δ probability

mass is divided uniformly between the incorrect classes.

This technique is somewhat related to our work because

smaller logits will generally cause smoother output distri-

butions, but note that label smoothing would be satisfied

to have very large logits so long as the probabilities af-

ter normalization are smooth. Warde-Farley & Goodfellow

(2016) showed that label smoothing offers a small amount

of robustness to adversarial examples, and it is included by

default in the CleverHans tutorial on adversarial examples

(Nicolas Papernot, 2017).

Mixup (Zhang et al., 2017) trains the model on input points

that are interpolated between training examples. At these

interpolated input points, the output target is formed by sim-

ilarly interpolating between the target distributions for each

of the training examples. Zhang et al. (2017) reports that

mixup increases robustness to adversarial examples.

We present our results comparing adversarial logit pair-

ing to label smoothing and mixup in Table 10. Here, we

use ResNet-101 on ImageNet, and all evaluations are with

PGD. We find that adversarial logit pairing provides a much

stronger defense than either of these two approaches.

Method Top 1 Top 5

Mixup 0.1% 1.5%

Label smoothing 1.6% 10.0%

ALP 28.2% 49.8%

Table 10. White box accuracies under Madry et al. (2017) attack

on ImageNet for label smoothing, mixup, and adversarial logit

pairing.

Besides these related methods of defense against ad-

versarial examples, ALP is also similar to a method

of semi-supervised learning: virtual adversarial training

(Miyato et al., 2017). Virtual adversarial training (VAT) is

a method designed to learn from unlabeled data by training

the model to resist adversarial perturbations of unlabeled

data. The goal of VAT is to reduce test error when training

with a small set of labeled examples, not to cause robust-

ness to adversarial examples. VAT consists of:

1. Construct adversarial examples by perturbing unla-

beled examples
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2. Specifically, make the adversarial examples by maxi-

mizing the KL divergence between the predictions on

the clean examples and the predictions on the adver-

sarial examples.

3. During model training, add a loss term that minimizes

KL divergence between predictions on clean and ad-

versarial examples.

ALP does not include (1) or (2) but does resemble (3). Both

ALP and VAT encourage the full distribution of predictions

on clean and adversarial examples to be similar. VAT does

so using a non-symmetric loss applied to the output prob-

abilities; ALP does so using a symmetric loss applied to

the logits. During the design of our defense, we found

that VAT offered an improvement over the baseline Madry

model on MNIST, but ALP consistently performed better

than VAT on MNIST across several hyperparameter values.

ALP also performed better than VAT with the direction of

the KL flipped. We therefore focused on further developing

ALP. The better performance of ALP than VAT may be due

to the fact that the KL divergence can suffer from saturat-

ing gradients or it may be due to the fact that the KL diver-

gence is invariant to a shift of all the logits for an individual

example while the logit pairing loss is not. Logit pairing en-

courages the logits for the clean and adversarial example to

be centered on the same mean logit value, which doesn’t

change the information in the output probabilities but may

affect the learning dynamics.

7. Conclusion and Future Work

In conclusion, we implement adversarial training at un-

precendented scale and present logit pairing as a defense.

The experiments in this paper were run on NVIDIA p100s,

but with the recent availability of much more powerful

hardware (NVIDIA v100s, Cloud TPUs, etc.), we believe

that defenses for adversarial examples on ImageNet will

become even more scalable. Specifically our contributions

are:

• We answer the open question as to whether adversar-

ial training scales to ImageNet. Adversarial training

passes the same tests on ImageNet as it has on smaller

datasets.

• We introduce adversarial logit pairing, an extension to

adversarial training that increases its effectiveness.

• We introduce clean logit pairing and logit squeezing,

low-cost alternatives to adversarial training that can

increase the adoption of robust machine learning in

institutions with fewer resources.

• We demonstrate an attack strong enough to break the

previously state of the art EAT model, which was used

by all 10 of the top defense teams in the NIPS 2017

competition on adversarial examples, and show that

we can defend against this new stronger attack.

Our results suggest that feature pairing (matching adversar-

ial and clean intermediate features instead of logits) may

also prove useful in the future.

One limitation to our defenses is that they are not currently

certified or verified (there is no proof that the true robust-

ness of the system is similar to the robustness that we mea-

sured empirically). Research into certification and veri-

fication methods (Aditi Raghunathan, 2018; Aman Sinha,

2018; Katz et al., 2017; Kolter & Wong, 2017) could make

it possible to certify or verify these same networks in future

work. Current methods do not scale to the size of models

we trained here or are only able to provide tight certification

bounds for models that were trained to be easy to certify us-

ing a specific certification method.

We would like to note that these defense mechanisms are

not yet sufficient to secure machine learning in a real sys-

tem (see many of the concerns raised by (Brown et al.,

2017) and Gilmer et al. (2018)), and that attacks could be

developed against our work in the future. Here, we use

ALP in conjunction with the PGD attack since it is the

strongest attack presented so far, but since ALP is indepen-

dent of the actual attack it is used with, it is conceivable

that ALP could be used in conjunction with future attacks

to develop stronger defenses. In conclusion, we present

our defense as the current state of the art of research into

defenses, and we believe it will serve as one step along the

path to a complete defense in the future.
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