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Chapter 4
Objectives

L

To review the concept of algebraic structures

0 define and give some examples of groups

o0 define and give some examples of rings

0 define and give some examples of fields

L O O O 0O

To emphasize the finite fields of type GF(27)
that make It possible to perform operations such
as addition, subtraction, multiplication, and
division on 7-bit words in modern block ciphers
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4-1 ALGEBRAIC STRUCTURES

Cryptography requires sets of Integers and specific
operations that are defined for those sets. The
combination of the set and the operations that are
applied to the elements of the set is called an
algebraic structure. In this chapter, we will define
three common algebraic structures: groups, rings,
and fields.

Topics discussed in this section.

4.3

4.1.1 Groups
4.1.2 RiIngs
4.1.3 Fields



Figure 4.1 Common algebraic structure

Common
algebraic structures
‘ Groups \ ‘ Rings \ ‘ Fields \
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| 41.1 Groups

A group (G) Is a set of elements with a binary operation
(¢) that satisfies four properties (or axioms). A
commutative group satisfies an extra property,
commutativity:

1 Closure:
1 Assoclativity:
d Commutativity:

] Existence of identity:
1 Existence of inverse:

4.5



4.6

4.1.1 Continued

Properties

Figure 4.2 Group

1. Closure
2. Associativity

4. Existence of 1dentity
5. Existence of inverse

3. Commutativity (See note)

Note:
The third property needs
to be satisfied only for a

{a,b,c, ...}
Set

Group

1

Operation

commutative group.
.

a )

J




i 411 Continued
Application

Although a group involves a single operation, the
properties imposed on the operation allow the use of a

pair of operations as long as they are inverses of each
other.

Example 4.1

The set of residue integers with the addition operator,
G=<7Z,,+>,

IS a commutative group. We can perform addition and subtraction
on the elements of this set without moving out of the set.

4.7



4.1.1 Continued

Example 4.2

The set Z,* with the multiplication operator, G = <Z,*, x>, Is also
an abelian group.

Example 4.3

Let us define aset G =< {4, b, ¢, d}, > and the operation as shown
In Table 4.1.

] [l o S| S
Sl |l o
o S Q| X

IS BTN BN B T

X0 T [
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4.1.1 Continued
Example 4.4

A very interesting group Is the permutation group. The set is the
set of all permutations, and the operation is composition: applying
one permutation after another.

Figure 4.3 Composition of permutation (Exercise 4.4)

O 1 I I ’ - o
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4.1.1 Continued
e XYY Continued

Table 4.2 Operation table for permutation group

4.10

o 123 [132] 213 231 [312 1321
m23 (23 (nn3210 2133|2301 B121] 1B 21
3213211123 | 231 2 1 3] 32 1] 31 2]
2 131 | 213113121 | 11231 | 321] (13 2] 23 1]
231|123 10| B21] (13 2] 31 2] [12 3] 2 1 3]
312 | 3121 213 | 1321 [123] 23 1] 13 2]
3211|3211 231 31 2] (13 2] 2 1 3] [12 3]




4.1.1 Continued

Example 4.5

In the previous example, we showed that a set of permutations
with the composition operation is a group. This implies that using
two permutations one after another cannot strengthen the security
of a cipher, because we can always find a permutation that can do

the same job because of the closure property.
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4.1.1 Continued

d Finite Group

A group is called a finite group if the set has a finite number of element.

d Order of a Group

The order of a group, |G|, is the number of elements in the group.

d Subgroups
A subset H of a group G is a subgroup of G, if H itself is a group with

respect to the operation on G.

In the other words, if G=<S, . >isagroup, H=<T, . >isaqgroup
under the same operation, and T is a nonempty subset of S, then H

IS a subgroup of G.



4.1.1 Continued
Example 4.6

Is the group H = <Z,,, +> a subgroup of the group G = <Z,,, +>?

Solution

The answer i1s no. Although H Is a subset of G, the operations
defined for these two groups are different. The operation in H is
addition modulo 10; the operation in G is addition modulo 12.

4.13



4.1.1 Continued
Cyclic Subgroups
If a subgroup of a group can be generated using the

power of an element, the subgroup Is called the cyclic
subgroup.

ad'— aeae ...eq (ntimes)

Note that the term power here means repeatedly applying the group operation to
the element.

4.14



4.1.1 Continued
Example 4.7

Four cyclic subgroups can be made from the group G = <Z;, +>.
They are H; = <{0}, +>, H, = <{0, 2, 4}, +>, H; = <{0, 3}, +>, and
H,=G.

3" mod 6 =0
0Ymod 6 =0 3! mod 6 =3
1?m0d620 4" mod 6 =0
12m0d6:1 4" mod 6 = 4
1"mod6=(l+1)mod6=2 4> mod 6 = (4 +4) mod 6 =2
13m0d6=(1+1+1)m0d6=3
1*mod 6=(1+1+1+1)mod6=4 50 0046 =0
1°mod 6=(1+1+1+1+1)mod6=5 51 mod 6 =5
2% mod 6 = 0 5-mod 6 =4
2l od 622 5 mod 6=3

5S"mod 6 =2

22 mod 6= (2 +2) mod 6 =4 s
5’mod 6 =1

4.15



4.1.1 Continued
Example 4.8

Three cyclic subgroups can be made from the group
G = <Zy*, X>. G has only four elements: 1, 3, 7, and 9. The cyclic
subgroups are H; = <{1}, x>, H, = <{1, 9}, x>, and H; = G.

19 mod 10 = 1 ;(1)20‘1 10=1

od 10 =7

72 mod 10 =9

30m0d 1():1 73 mOd 1023
3l mod 10 =3

32 mod 10=9 99 mod 10 =1

33 mod 10 =7 9! mod 10=9

4.16



i 411 Continued

Cyclic Groups

A cyclic group Is a group that is its own cyclic subgroup.
The element that generates the cyclic subgroup can

also generate the group itself.

This element is referred to as a generator.

If g Is a generator, the elements in a finite cyclic group can be
written as:

le, g, g2, . g”_l}, where g" = ¢

4.17



4.1.1 Continued
Example 4.9

Three cyclic subgroups can be made from the group
G = <Zy*, X>. G has only four elements: 1, 3, 7, and 9. The cyclic
subgroups are H; = <{1}, x>, H, = <{1, 9}, x>, and H; = G.

a. The group G = <Zs, +> is a cyclic group with two generators,
g=land g=>5.

b. The group G = <Zio*, X> IS a cyclic group with two generators,
g=3and g=17".

39 mod 10 =1 79 mod 10 = 1
3 mod 10 =3 7! mod 10 =7
32 mod 10=9 72 mod 10 =9

33 mod 10 =7 73 mod 10 = 3

4.18



i 411 Continued

LLagrange’s Theorem

Assume that G Is a group, and H Is a subgroup of G. If
the order of G and H are |G| and |H|, respectively, then,
based on this theorem, |H| divides |G|.

Order of an Element

The order of an element a in a group, ord(a), Is the
smallest integer n such that a" =e.

The order of an element is the order of the cyclic group it
generates (i.e. the No. of elements in the group).

4.19



4.1.1 Continued
Example 4.10

a. In the group G = <Z;, +>, the orders of the elements are:
ord(0) = 1, ord(1) = 6, ord(2) = 3, ord(3) = 2, ord(4) = 3,
ord(5) = 6.

b. In the group G = <Z,,*, x>, the orders of the elements are:
ord(1) =1, ord(3) =4, ord(7) =4, ord(9) = 2.

79 mod 10 = 1

19mod 10 = 1 7' mod 10=7 7¢= 2401 (mod 10)
7°mod 10=9  =1=e

30m0d 10=1 73 mOd 1023

31 mod 10 =3 3*=81(mod 10)=1=¢
32 mod 10=9 99 mod 10 =1
33 mod 10 =7 9! mod 10=9
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4.1.2 Ring

Aring, R =<{...}, », >, Is an algebraic structure with two
operations.

Figure 4.4 Ring

Distribution of [J over @
1. Closure ® || 1. Closure ] p ~
2. Associativity 2. Associativity Note: _
3. Commutativity 3. Commutativity > Ulne thlr.d property 1s
_ _ _ only satisfied for a
4. Existence of 1dentity kcommutative ring.
5. Existence of inverse

{a,b,c, ...} o | I

Set Operations
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4.1.2 Continued
Example 4.11

The set Z with two operations, addition and multiplication, is a
commutative ring. We show it by R = <Z, +, x>, Addition satisfies

all of the five properties; multiplication satisfies only three
properties.

4.22



4.1.3 Field

A field, denoted by F = <{...}, », 0 > is a commutative
ring in which the second operation satisfies all five
properties defined for the first operation except that the
Identity of the first operation has no inverse.

Figure 4.5 Field

Distribution of [J over @
- D
1. Closure ® | 1. Closure ] Note:
2. Associativity 2. Associativity The 1dentity element
3. Commutativity 3. Commutativity of the f_1rst opera‘qon
: : : : : : has no mverse with
4. Existence of identity 4. Existence of identity
_ _ _ _ respect to the second
5. Existence of mverse 5. Existence of mverse —>| operation.
\. J
{a,b,c, ...} o I I
Set Operations

4.23 Field



4.1.3 Continued
Finite Fields

Galois showed that for a field to be finite, the number of
elements should be p”, where pis a prime and »n Is a
positive integer.

‘ NOfEI

A Galois field, GF(p”), Is a finite field
with p7 elements.

4.24



413 Continued
GF(p) Fields

When n = 1, we have GF(p) field. This field can be the
set 2, {0, 1, ..., p — 1}, with two arithmetic operations.

4.25



4.1.2 Continued
Example 4.12

A very common field in this category is GF(2) with the set {0, 1}

and two operations, addition and multiplication, as shown iIn
Figure 4.6.

Figure 4.6 GF(2) field

GF(2)
70 1 <0 1 0 0
0,1y [F= 0[0 1 0[0 0 - =
11 o 1o 1 =l W a1

Addition Multiplication Inverses

4.26



4.1.2 Continued
Example 4.13

We can define GF(5) on the set Z¢ (5 Is a prime) with addition and
multiplication operators as shown in Figure 4.7.

Figure 4.7 GF(5) field

+l012 3 4 x|l0 123 4 Additive inverse
GE(5) 001234 000000 a|01234

1112340 1{01 234 —alo4321
10,1,2,3, 4} |+ x 2123201 2102413

3134012 3103142 a 101234

440123 40 4321 all—1324

Addition Multiplication Multiplicative mverse
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Summary

i 4.1.3 Contihued

Table 4.3 Summary

Algebraic Supported Supported
Structure Typical Operations Typical Sets of Integers

Group (+ —)or (X +) Z,orZ,*

Ring (+ —) and (X) Z

Field (+ —) and (X +) Z,

4.28



In cryptography, we often need to use four
operations (addition, subtraction, multiplication,
and division). In other words, we need to use fields.
We can work in GF(2") and uses a set of 2" elements.
The elements In this set are n-bit words.

Topics discussed in this section.

4.2.1 Polynomials
4.2.2 Using A Generator

4.2.3 Summary

4.29



4.2 Continued

Example 4.14

Let us define a GF(22) field in which the set has four 2-bit words:
{00, 01, 10, 11}. We can redefine addition and multiplication for
this field in such a way that all properties of these operations are
satisfied, as shown In Figure 4.8.

Figure 4.8 An example of GF(2) field

Modulus: x2+x + 1 Addition Multiplication
@[00 01 10 11 &|[00 01 10 11
00]00|01(10]11 00{00]00{00|00
01{01|00(11|10 01{00|01{10|11
10{10|11{00]01 10{00|10{11]01
11{11{10{01{00 11{00|11{0L|10

Identity: 00 Identity: 01

4.30



i 4.2.1 Polynomials

A polynomial of degree n— 1 Is an expression
of the form

f) =a, (X +a, X"+ o+ apx! + agd

where X is called the ith term and a; is called coefficient
of the &h term.

4.31



421 Continued
Example 4.15

Figure 4.9 show how we can represent the 8-bit word (10011001)
using a polynomials.

Figure 4.9 Representation of an 8-bit word by a polynomial

n-bit word 1 0 0 1 1 0 0 1

VY Y Y Y Y Yy

Polynomial | 1x7 + 0x% + 0x° + 1x* + 1x> + 0x> + Ox! + 1x°

First simplification | 1x7 + 1x* + 1x° + 1xY

Second simplification x4

4.32



421 Continued
Example 4.16

To find the 8-bit word related to the polynomial X + X + x, we
first supply the omitted terms. Since 7 = 8, It means the
polynomial is of degree 7. The expanded polynomial is

Ox” +0x% + 12 + 0x* + 0> + 1x% + 1x! + 0xY

This is related to the 8-bit word 00100110.

4.33



421 Continued
GF(2") Fields

‘ NOIEI

Polynomials representing n-bit words
use two fields: GF(2) and GF(27).

4.34



421 Continued
Modulus

For the sets of polynomials in GF(27), a group of
polynomials of degree 7 is defined as the modulus. Such
polynomials are referred to as irreducible polynomials.

Table 4.9 List of irreducible polynomials

Degree Irreducible Polynomials
l (x+ 1), (x)

(x2+x+ 1)

(@ +x*+ D, (0 + x+1)

(x4+x3+x2+x+ 1), (x4+x3+ 1), (x4+x+ 1)

(x5+,12+ 1), (x5+x3+x2+x+ 1), (x5+x4+x3+x+ 1),

(x5+x4+x3+x2+ 1), (,1c5+,wc4+,1c2 +x+1)

| & W] o
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421 Continued
Addition

‘ NOIEI

Addition and subtraction operations on
polynomials are the same operation.

4.36



421 Continued
Example 4.17

Let us do (X° + x2 + X) @ (X® + x* + 1) in GF(28). We use the symbol
@ to show that we mean polynomial addition. The following shows
the procedure:

Ox’ + X0+ 1+ 0+ 0 + I+ Il + 00 @
Ox” + X0+ 0 + X+ 150 + 12+ Oxl + 1X©

Ox + 0P+ 1 + 0+ 1 + 0%+ Il + 1Y = P+ +x+1

4.37



421 Continued
Example 4.18

There 1s also another short cut. Because the addition in GF(2)
means the exclusive-or (XOR) operation. So we can exclusive-or
the two words, bits by bits, to get the result. In the previous
example, X + X2 + xis 00100110 and x° + X2 + 1 is 00001101. The
result is 00101011 or in polynomial notation X + X + x+ 1.

4.38



421 Continued
Multliplication

1. The coefficient multiplication is done in GF(2).

2. The multiplying X' by ¥ results in x*/.

3. The multiplication may create terms with degree more
than n — 1, which means the result needs to be reduced
using a modulus polynomial.

4.39



421 Continued
Example 4.19

Find theresultof )+ X+ X) @ (X + X + X + X + X) in GF(29)
with irreducible polynomial (X + xX* + X + x+ 1). Note that we use
the symbol @ to show the multiplication of two polynomials.

Solution

P, ®P2=x5(x7+x4+x3+x2+x)+x2(x7+x4+x3 +x2+x)+x(x7+x4+x3+x2+x)

P ®l)2=)«712+x9+J68+)c7+xﬁ+x9+x6+x§+)c4+)c3+J58+)CS+)c4+x3+)c2

P, ®P,= (x12+x7+x2)m0d(x8+x4+x3+x+ 1)=x5+x3+x2+x+1

To find the final result, divide the polynomial of degree 12 by the
polynomial of degree 8 (the modulus) and keep only the
remainder. Figure 4.10 shows the process of division.

4.40



421 Continued

Figure 4.10 Polynomial division with coefficients in GF(2)

41

Bxttr tx+1 | x x4
x12+x8+x7+x5+x4

B4 S a2

X+t +x+1

Remainder | ¥° + ¥ + 2+ x + 1

4.41



421 Continued
Example 4.20

In GF (2%), find the inverse of (X + 1) modulo (x* + x+ 1).

Solution
The answer is (X + x+ 1) as shown in Table 4.5.

Table 4.5 Euclidean algorithm for Exercise 4.20

q ry Iy r ty 5 t

G+ D | Prx+) @D (x) (0) (1) Z+ 1)
(x) %+ 1) (x) (1) (1) P+ | CHx+D)
(x) (x) (1) (0) P+ CH+x+1) (0)

(D (0)

4.42



421 Continued
Example 4.21

In GF(29), find the inverse of (x°) modulo (@ + X'+ X+ x+ 1).

Solution

The answer is (X + xX* + X + X) as shown in Table 4.6.

Table 4.6 Euclidean algorithm for Exercise 4.21

q ry ry r t 15 t
(x3) (.x‘8 it x4 1) (.x‘s) (,\'4 0+ X+ 1) (0) () (_x'?’ )
(x+1) @) x4+ X +x2+1) (1) () W+
(x) (_)(Jr x4+ 1) (.1‘3 2+ 1) (1) (x> ) (_Jr4 F O+ 1) {.r5 T X)
C+2+D| G+ +D) (1) (0) G+l Pt e+ (0)

4.43



4.2.1 Continued

Multliplication Using Computer
The computer implementation uses a better algorithm,
repeatedly multiplying a reduced polynomial by x.

4.44



421 Continued
Example 4.22

Find the result of multiplying P, = (0 + X+ X) by P, = (X + X + X3
+ X + X) in GF(28) with irreducible polynomial (X + Xt + X + x +
1) using the algorithm described above.

Solution
The process is shown in Table 4.7. We first find the partial result

of multiplying X, X, X2, X, X, and X° by P,. Note that although
only three terms are needed, the product of X7 @ P, for m from 0O
to 5 because each calculation depends on the previous resulit.

4.45



421 Contihued
Sl wys Continued

P =(®+xX+X)xP,=(X+ X+ X+ X+ X) in GF(2%)
Table 4.7 An efficient algorithm (Example 4.22)

Powers Operation New Result Reduction
AV ® P, Xt + 0+ +x No
xl®P2 xR+ + X+ % +x) | R+ +x+ 1 Yes
x2®P2 xR +x2+x+ 1) O+ +x No
x3®P2 x®0O+ X+ %+ Xt 42 No

¥ ® P, x® (! +x+ 5 + 29 X 4+x+ 1 Yes
x5®P2 x® @ +x+1) O+ No
P1><P2=(x6+x2+x)+(x6+x3+x2+x)+(x5+x2+x+ 1)=x5+x3+x2+x+1

4.46



421 Continued
Example 4.23

Repeat Example 4.22 using bit patterns of size 8.
Solution

We have P1 = 000100110, P2 = 10011110, modulus = 100011010
(nine bits). We show the exclusive or operation by &

Table 4.8 An efficient algorithm for multiplication using n-bit words

Powers Shift-Left Operation Exclusive-Or

X ® P, 10011110

X' ® P, 00111100 (00111100) @ (00011010) = 00100111
x> ® P, 01001110 01001110

X ® P, 10011100 10011100

*® P, 00111000 (00111000) @ (00011010) = 00100011
X ® P, 01000110 01000110

P, ® P, =(00100111) @ (01001110) ® (01000110) = 00101111

4.47



421 Continued
Example 4.24

The GF(2%) field has 8 elements. We use the irreducible
polynomial (X + X + 1) and show the addition and multiplication
tables for this field. We show both 3-bit words and the
polynomials. Note that there are two irreducible polynomials for

degree 3. The other one, (X + x+ 1), yields a totally different table
for multiplication.

4.48
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421 Contihued
SclylICEwrs Continued

Table 4.9 Addition table for GF(2)

000 001 010 011 100 101 110 111
® (0) 1) (x) (x+1) (x?) 2+1 +x)  @E+x+1)
000 000 001 010 011 100 101 110 111
(0) (0) (1) (x) (x+1) (x?) x*+1) «+x) | +x+1)
001 001 000 011 010 101 100 111 110
(1) (1) (0) (x+1) (x?) x2+1) +x) | P+x+D | &P+x)
010 010 011 000 001 110 111 100 101
(x) (x) (x+1) (0) (1) «Z+x) | E+x+D) | &2 +x) x2+1)
011 011 010 001 000 111 110 101 100
x+1) (x+1) (x) (1) (0) «C+x+1)| PF+x) 2+ 1) (x?)
100 100 101 110 111 000 001 010 011
(x%) (x?) @*+1) @*+x) | P+x+1) (0) (1) (x) (x+1)
101 101 100 111 110 001 000 011 010
x*+1) x*+1) (x?) +x+D) | P+x) (1) (0) (x+1) (x)
110 110 111 100 101 010 011 000 001
2+ x) x2+x) |@2+x+1) (x?) x2+1) (x) (x + 1) (0) )
111 111 110 101 100 011 010 001 000
+rx+D|@+x+ D] Z+x) xZ+1) (x?) x+1) (x) (1) (0)
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421 Contihued
SclylICEwrs Continued

Table 4.10 Multiplication table for GF(2)

000 001 010 011 100 101 110 111
® (0) (1) (x) (x+1) (x?) 1) @rx) (P rx+ )
000 000 000 000 000 000 000 000 000
(0) (0) (0) (0) (0) (0) (0) (0) (0)
001 000 001 010 011 100 101 110 111
(1) (0) (1) (x) (x+ 1) (x3) 2+ | x| rx+ D)
010 000 010 100 110 101 111 001 011
(x) (0) (x) (x) (x +x) 2+ 1) u2+x+l) (1) (x+1)
011 000 011 110 101 001 010 111 100
x4+ | O | «x+) | &P+x) | o2+ (1) ®  |er+rx+ D]
100 000 100 101 001 111 011 010 110
@ O] @) (2 + 1) (1) |e2sx+D| @+D x) o +x)
101 000 101 111 010 011 110 100 001
(x2 +1) (0) (x2 +1) (.3:2 +x+1) (x) (x+1) (x2 +Xx) (xz) (1)
110 000 110 001 111 010 100 011 101
] 3 7 . . . 2
(X~ +x) (0) (X~ +x) (1) (x“+x+1) (x) (x7) (x+1) (x=+1)
111 000 111 011 100 110 001 101 010
7 o] ) ] 7 . ] ,
x“+x+ D] (0) [(x+x+D] (x+1) (x7) (x~ +x) (1) (x“+1) (x)




| 4.2.2 Using a Generator

Sometimes It IS easier to define the elements of the
GF(27) field using a generator.
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421 Continued
Example 4.25

Generate the elements of the field GF(24) using the irreducible
polynomial f(X) = x* + x+ 1.

Solution
The elements 0, ¢, ¢, g2, and @ can be easily generated, because
they are the 4-bit representations of 0, 1, X2, and X°. Elements ¢*
through ¢4, which represent x* though x** need to be divided by
the irreducible polynomial. To avoid the polynomial division, the
relation f(g) = ¢¢ + g+ 1 = 0 can be used therefore g* =g + 1.

(See next slide)
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421 Continued
SclylCEwss Continued
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(0001)
(0010)
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(1000)
(0011)
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= (1100)

(1011)
(0101)
(1010)
(0111)
(1110)
(1111)
(1101)
(1001)



4.2.1 Continued

Example 4.26
The following show the results of addition and subtraction
operations:

a. @+ ¢+ =C+ (P +f+g+ D+ +g+1)=g + g% — (1100)
b @~ g0=g"+ =g+ (¢ + g =g"— (0100)

4.54



421 Continued
Example 4.27

The following show the result of multiplication and division
operations:.

q. g9>< gll g20 g20m0d 15:g5:g2+g%(0110)
X =g10=g2+g+1%(0111)

4.55



i 4.2.3 Summary

The finite field GF(2”) can be used to define four
operations of addition, subtraction, multiplication and
division over n-bit words. The only restriction is that
division by zero is not defined.

4.56
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