
Browser Chronicles

A browser-based gamebook platform

A Gamebook
A gamebook is a fiction book, where the reader can influence the the story by 1

making choices.

Usually, after a section of text, different possible actions are presented. Each of
them is associated to a number, pointing to the text section corresponding to
the player’s action (i.e. ​talk with the frog ─ go to page 1234​).

Eventually, the story arrives to an end, and depending on his choices, the player
wins or loses.

Browser Chronicles, overview
Browser Chronicles is a game engine that could run different ​stories​.

A ​story is organized as a graph, composed by ​steps​. Each ​step defines the
interaction with the user and could give the opportunity to go to another ​step​;
in this case, the destination ​step depends on the user input. A special type of
step​, called ​end​, informs the user about the result of his path (win/lose).

Required views
Browser Chronicles presents to the user two main views: ​play and ​show​,
detailed below. These views should be able to read an XML file describing a
story​, and must be implemented using HTML, CSS and AngularJS.

- play​: interactive view, meant for the end players, that starts displaying the
first ​step​, letting then the user play the game, by moving from a ​step to
the next one according to player’s decisions.

- show​: service view, useful to check the validity of the ​story​; it illustrates
the complete graph of the ​story​, highlighting the winning path composed
by the minimum number of ​steps​.

1 in French: ​livre dont vous êtes le héros​.

You should create the project by running ​yo angular. Because of a bug of the 2

generator, in order to have everything work properly, you should also run
npm install grunt­karma ­­save­dev​. Enable then the XML support
installing ​bower i ­­save angular­xml​, then configuring it . 3

Protocol details
The XML file root element must be named ​story​. Many ​stepelements appear
inside the root element. Each ​stepelement needs to record some data: ​id​,
type​, and some details related to its specificity.

For example:

<story>

 <step id="0" netxStep="3" title="Welcome!"/>

 ...

 <step>

 <id>132</id>

 <type>end</type>

 <win>false</win>

 </step>

</story>

As you can guess, our engineers’ ideas are not so clear about the format: you’ll
need to refine this definition into something acceptable and then formalize it
with an XML Schema Definition, that should embrace the ​step types present in
your ​stories​, and be easily extensible for new possible types. This enables the
possibility to validate a ​story correctness before loading it on the game engine,
and ensure a simple but efficient XML structure.

Step types
A ​step​, independently from its ​type​, could have a ​titleand a ​description
(both always optional), that must be displayed to the player, if present. The
typedefines the further interaction requested to (in general) move to another
step​.

2 refer to the project page for further usage info: ​https://github.com/yeoman/generator-angular​,
you are encuraged to use the shipped generators to create additional code.
3 you’ll need the HTTP interceptor, more info: ​https://github.com/johngeorgewright/angular-xml

https://github.com/yeoman/generator-angular
https://github.com/johngeorgewright/angular-xml

Multiple choice

This ​typerepresents the most basic interaction with the user. It will show
title and ​description as mentioned before, and a number of exclusive
options. When the player selects an option and clicks the “next” button, the
application updates the view to the ​step corresponding to the player’s choice
(hint: use the ​id​s).

The number of options must be greater than zero, but it could be ​one​. In this
case, the option label will not be shown, but the “next” button will point
directly to the corresponding ​step​. This could be used to introduce the ​story​, or
split the interactions with narrative parts.

Riddle

For this ​type​, the ​descriptionwill likely consist in some hints. The player
should then guess a word (or a sentence) and write it into an ​input box. If the
answer does not match with any possible solution, an error message is shown,
otherwise the player is sent to the associated next ​step​.

The number of accepted answers must be at least one, but potentially we could
have different next steps associated to different replies.

End

The only type not offering a next ​step​. This type exhibits ​win​, a boolean
indicating the outcome of the game. The player must be informed on the value
of ​win​ with a big colored text (eg. ​You win​/​You lose​).

In case of victory, a short sentence should inform the player about the number
of ​steps he did and the ​minimum number of ​steps required from the start to a
successful end.

A ​story​ has in general many ​end​ ​steps​, but needs at least one happy ending.

Memory

For this ​step​ ​type​, the player needs to solve a memory game.

An even number of reversed playing cards appears on the screen; the user
selects two cards, by clicking on them; if they are identical, they disappear,
otherwise their face is hidden again, and the user could select two cards. When

all the pairs have been found, the player could click on the “next” button to go
to the next ​step​.

This step type should work out-of-the box with a predefined set of cards, but
the XML format should enable the customization of card faces. To modulate
the difficulty of this ​type​, the number of shown card should be customizable
(some constraints apply), with the effect to take a subset of the deck or
duplicate some couples.

Maze

Alternatively to ​memory​, you could implement a 2D maze. The XML will store
the number of rows and columns of the puzzle, that will then be generated by 4

the application.

The game starts with the player’s piece at the starting point; using the keyboard
arrows (bonus: think about touch devices) the users move his piece inside the
maze. When the exit is reached, the game stops and the “next” button is
activated.

You name it

Neither ​memorynor ​mazeinspire you? You can formalize an alternative, write
down a short description and send it to us . 5

Evolution ​─ where the bonus points hide

This section presents some possible extensions to Browser Chronicles, that will
be evaluated ​only if the requisites explained in “acceptance criteria” are met.
Before starting your way to implement any of these, talk to us, so to ensure that
your plan is a good plan.

Riddle answer flexibility

Add an option to the ​riddletype​, relaxing the string equality constraint to
something more reasonable; indeed, in some cases, “close enough” answers
should be accepted.

4 how to generate a maze: ​https://en.wikipedia.org/wiki/Maze_generation_algorithm
5 as a private message on Piazza

https://en.wikipedia.org/wiki/Maze_generation_algorithm

For example, you could calculate the Levenshtein distance between the 6

expected answers and the given one, and take the decision based on the
resulting value.

Rich text

Our authors would like to insert rich content on the ​stories​, such as t​e​x​t
fo​rm​at​t​in​g and images. In particular, HTML fragments should be supported and
correctly displayed if inserted in any rendered text attribute.

Persistence

When a player abandons temporary a ​story and then get back to it, he should be
able to get back to the same ​step without re-doing all the path. The status could
be saved either on the browser or on the server.

Author mode

Enable users to create ​stories without writing XML. An additional view, called
edit​, should be created, containing a GUI showing the ​story graph. Each ​step
could be modified by clicking on it and changing its attributes on a form.

This view includes an “export” button to show the XML code (or a “save as”
browser window).

Security concerns

Talking about security: how this platform could be exploited? Find a possible
way to fix the major security flaws and implement it (yes, you’ll need
server-side code).

Acceptance criteria
- Ship your application with some example ​stories as to show its potential;

these ​stories would be listed by the application, and loaded on demand
using an Ajax call (AngularJS ​$http​).

- The Web Console is your friend ​during development​, but remember to 7

remove debugging code before shipping the application! Moreover,

6 more info: ​https://en.wikipedia.org/wiki/Levenshtein_distance
7 ​https://developer.mozilla.org/en/docs/Web/API/Console

https://en.wikipedia.org/wiki/Levenshtein_distance
https://developer.mozilla.org/en/docs/Web/API/Console

errors must be handled by explaining the issue to the user: the
application must ​never​ freeze with a red error on console.

- The ​play view loads the ​story corresponding to a parameter given in the
URL, and it must implement ​multiple​choice​, ​riddle​, ​endplus one
more type: ​memory​, ​maze​ or your proposal (to be accepted).

- The ​show view loads a ​story in the same way, but it shows all the ​steps at
once, as a graph (find a JavaScript library to do that); the ​steps ​id​s should
be rendered as nodes, and the ​next step connections as links. The shortest
path between the starting step and a winning end should be highlighted
in green. If there is no path from the start to the victory, show a warning.

- For both the ​show view and the ​end​type​, you’ll need to compute the
shortest path between the start and a successful end. At least this
function must be unit tested. ​yoincluded for you a JavaScript test suite:
Jasmine ; ​grunt​ ​test will run the tests saved in the directory 8

test/spec​.
- In case the potential evolutions change substantially the structure (e.g.

their presence change considerably the behavior of the system), they
should be implemented separately. In any case explain how to enable
them on the readme file.

Report
A report describing your efforts is requested. Be professional, focusing on
these points:

- Difficulties you encountered during the development and how you
overcame them. [½ to 2 pages]

- Extensibility: how easy is it to add a new ​step ​type​? Which actions
should be taken to adapt your code and the XSD? Give a complete
example using ​memoryor ​maze(the one you didn’t implement). [some
code allowed]

- Complexity: calculate (and explain) the complexity of your shortest path
finder algorithm. [½ page]

- Tests: enumerate you test cases for the shortest path function, explaining
the reason under each case. Add any other test-related information
concerning your project. [½ to 2 pages]

8 documentation on: ​http://jasmine.github.io/2.4/introduction.html

http://jasmine.github.io/2.4/introduction.html

- Security: the solution, as described by this track, has some severe
security issues that allow an expert user to break the game rules.
Enumerate the possible flaws and propose structure fixes. [1 page]

- If you implemented some evolutions, describe your choices.

Evaluation
- ⅓ demos: think about the features you want to present,

- Wednesday: peer-reviews, other developers will evaluate your
product;

- Thursday: customer-reviews, they want to see an MVP, don’t let
them down!

- ⅓ report: truth, completeness, clearness.
- ⅓ code: see acceptance criteria.

Deliveries
- yo​ ​angular will prepare your Git repository and ensure these

requirements are respected:
- the application must start with ​grunt serve​, the tests with

grunt test​.
- your source code should live in a subdirectory of your repository,

called ​app​.
- The ​story.xsd file and some example ​stories must be stored into a

subdirectory called ​app/stories​.
- Final products and report on Sunday at 23:59 CEST. The expected tag is

vFinal​.

