Recurrent Neural Networks

Armand Joulin

Facebook Al research

Introduction

* How to train a deep network:
— Forward pass: apply your network to your data

— Evaluation: Compute the error given by your loss
function

— Backward pass: propagate this error through the
network

— Update the parameters with gradient descent

* What happens when your data are sequences?

— Example: language modelling, weather forecast,
videos...

— Take advantage of the structure of the data to learn
better model?

Sequence modeling

* At each time step t, we receive an input x(t) and
we want to learn the probability of the output

y(t)

 We suppose that the output y(t) depends on the
past inputs, i.e. x(1),..., x(t)

* |n other words we are interested in modeling the

probability :
P(y(t) | x(1), ..., x(t))

Examples

* Language modelling:
— Predicting the distribution of a sentence S
P(S) = P(wy,...,ws|)
— Since a sentence is a sequence, this means:
P(S) =] P(we | wier,...,wi)
- Action classification in a video:
— Predicting if action is happening based on the past

frames:
P(at | fe=1,---5 f1)

Example: Language modelling

* One-hot encoding (or 1-of-K encoding):

— Vocabulary = {“cat”, “in”, “is”, “room”, “the”, “.”}
— “cat” =j100000_
_Ilin” =:010000:
_uisn =001000
— “room”=[000100_
— “the” =[000010]
- “7 =[000001]

Example: Language modelling

* N-grams models are very popular to model a
sequence:

— Bigram:

P("the cat is in the room.”)

P(”the”)P(”CCLt” | ”th@”)P(”’iS” | ”cat”)P(”in?? | 777:877)
X P(??theﬂ 77in77)P(77T00m77 ,’thG”)P(”.” 77,',,00m77)

— Trigram:

P("the cat is in the room.”) = P("the”)P("cat” | "the”)P("is” | "cat”, 7the”)P("in” | 7is”, "cat”)

X P(??theﬂ ’7,,1:””7 77,1:877)P(77,r,00m77 |”th€”, 77in77)P(77.77 |”T00m”’ 77th677)

Example: Language modelling

* N-grams can be modeled by feed-forward
networks (Bengio et al. 2003):

— 4-grams: input projection hidden output

w(t-3)
\

wit2) | ——» ——» ——»

7 \'} w
w(t-1) U

Example in Torch

require '"'nn
local i2w = {"ball", "is", "red", '"the"}

Local w2i = {ball =1, is = 2, red = 3, the = 4}
Local ngram = 3

Local nhid = 10

Local nproj = (ngram-1) * nhid

Local feedforward = nn.Sequential()
feedforward:add(nn.LookupTable(#i2w, nhid))
feedforward:add(nn.View(nproj))
feedforward:add(nn.Sigmoid())
feedforward:add(nn.Linear(nproj, nhid))
feedforward:add(nn.Sigmoid())
feedforward:add(nn.Linear(nhid, #i2w))

Local criterion = nn.CrossEntropyCriterion()

feedforward: forward(torch.LongTensor{w2i["ball"], w2i["is"]})
criterion:forward(feedforward.output, w2i["red"])

Example: Language modeling

e Limitation of Feed-forward networks:
— How do | set the size of the n-gram?

— For each prediction, | need to process the past again which
is inefficient

* Also we are making the strong assumption that:
P(wt ‘ Wy, - - - awt—l) :p(wt ‘ Wt—1, wt—2)

* |Instead of hard-coding the important
information, can we make the network learn to
“remember” what is important?

Recurrent neural network

Main idea: Keep a “memory” of the past in the hidden
layers.

That is, by making the previous state of the hidden
layers influence the current one

What does it mean?

— In simple 1-layer neural network, the state h of the hidden
layer only depends on the input:

h(t) = f(w(t))

— In a recurrent model:

h(t) = f(w(t), h(t-1))

Simple Recurrent Network

h(t-1)

U
A B

w(t) —> | —> |)

* The simple RNN contains 1 hidden layer which
possesses a “Recurrent” connection

* This network is called the ElIman Network (from Elman,
1990)

Simple Recurrent Network

h(t-1)

U
A B

w(t) —> | —> |)

* The simple RNN:
ht — O'(A”(Ut + Rht_l)

where: ye = f(Bht)

— A, B and R are matrices,
— Sigmoid: o(z) = 1/(1 + exp(—))
— Softmax f(z)r = exp(zx) Zexp zi))

Back to the example

I B (N) n «u n n II}

Vocabulary = {“cat”, “in”, “is”, “room”, “the”, ”.

Input Model output target

“the” |[_» h(1) > [.5000.500] “cat’=[100000]
U

“cat” | h(2) > [00.40400.2] “is"=[001000]
U

CTCO h(3) > [003000.50.2] “in"=[010000]
y

“in” [y h(4) > [0000.80.2] “the”=[000010]

How to train a RNN?

Problem: each output depends on all the states of the
hidden layers sincet=1

To compute the gradient: backpropagate until the
beginning of the sequence

This is called backpropagation through time (BPTT)

RNN can be seen as very deep neural networks with
weight sharing

Backpropagation through time

* Unrolling the model since the beginning
* This means that computing a gradient is O(T)
* backward propagation of error in red:

W) | | 100) | | v(1)
) | >
w(2) || h2) | v(2)
(— —
b |
i |
w(T-1) | ! 2 nr-1) | > [1)
— Y
Y |
wit) | [10] e [y

Backpropagation through time

* Trick to make it practical :
— unfold the network for N fixed step -> O(N)
— compute the gradient every N steps
— > gradient can be computed efficiently online

h(t-N-1)

o)

w(t-N) '_> hit-N) || > | y(tN)

4)

>l

S
wr-y) || ol hry | > [y
— CE— Y
e)
S

wr] > [hm

Backpropagation through time

* Depending on the eigenvalues of the
recurrent matrix R, two possible issues
(Bengio, 94):

— max(eigenvalue) > 1 2 Exploding gradient
— max(eigenvalue) < 1 = Vanishing gradient

Backpropagation through time

* max(eigenvalue) > 1 2 Exploding gradient:
As you backpropagate through time, you
multiply the gradient over and over by R,
making the norm of the gradient go to infinity

- Clipping or normalizing the gradient fix that
problem (Mikolov et al. 2010)

Backpropagation through time

* max(eigenvalue) < 1 + nonlinearity 2 Vanishing
gradient:

* The magnitude of the gradient decreases when
backpropagate through time:

—>Hard to keep very long dependency

—Solutions have been proposed to counter that effect :

— Exponential trace memory (Jordan 1987,Mozer1989)
— Long Short-term Memory (Hochreiter & Schmidhuber, 1997)

RNN in torch

Local sentence, ws = {"the", "ball", "is", "red"}, {3}
for i,v in ipairs(sentence) do ws[i] = torch.LongTensor{w2i[v]} end

Local R = nn.Linear(nhid, nhid)
Local A = nn.LookupTable(#i2w, nhid)
local B nn.Linear(nhid, #i2w)

Local m = nn.Sequential()

Local encoder = nn.ParallelTable():add(R):add(A)

Local decoder = nn.ConcatTable():add(nn.Identity()):add(B)
m:add(encoder):add(nn.CAddTable()):add(nn.Sigmoid()):add(decoder)

Local rnn = {3}
for t = 1, #ws- 1 do

rnmm[t] = m:clone{'weight', 'gradWeight', 'bias', 'gradBias'}
end

RNN in torch

Local hs, ys, out = {[@] = torch.Tensor(nhid):zero()}, {}
for t = 1, #ws - 1 do
out = rnn[t]:forward{hiddens[t-1], ws[t]}
table.insert(hs, out[1l])
table.insert(ys, out[2])
end

Local gradh, grad, err = torch.Tensor(nhid):zero()
for t = #ws - 1, 1, -1 do
criterion:forward(ys[t], ws[t+1l])
err = criterion:backward(ys[t], ws[t+1])
grad = rnn[t]:backward({hs[t-1], ws[t]}, {gradh, err})
gradh = grad[1]
gradh:div(math.max(10, gradh:norm(2)))
end

RNN in practice

Kneser-Ney 5-gram 141
Maxent 5-gram 142
Random forest 132
Feedforward NNLM 140
Recurrent NNLM 125

* Penn TreeBank (¥1M words, vocabulary size = 10K)

* RNNLM (Mikolov toolbox, 2010) show a significant improvement
compared to standard models

Dealing with large vocabulary

* Hierachical Softmax:
— Cluster words in meta-class to speed-up decoding
— speed up (x10) but slightly worse than full softmax

e Character level RNNs:

— When the dictionary is very large, character level RNNs
may be better

— No need for text normalization

— They are very slow because needs to process every
character

Strategies for Training Large Vocabulary Neural Language Models; Chen et al. 2015

Generating text with recurrent neural networks; Sutskever et al. 2011

Alternative structures for character-level RNNs; Bojanovski et al. 2015

More complex RNN

* To capture long term dependency, need for
more complex architectures:

— Longer Short Term Memory (LSTM)
— Gated Recurrent Network (Cho et al, 2014)
— Linear Unit Network (Mikolov et al. 2014)

e All of these networks are trained in the same
way as standard RNNs

Long Short Term Memory (LSTM)

e General idea:

— Each hidden units possess a “memory cell” which
can be preserve, modify or erase

— The state of the hidden is simply a consequence of
the current state of the memory cell.

— In practice this means adding gating”
mechanisms to allow:

* Preserving the value of the hidden layers
* or “forgetting” its previous value

Gating mechanism

e A gatingis a variable going from 0 to 1 which
allows or block a signal.

* For example:
y=o(x)a+ (1—0o(x))b
where o is the sigmoid function (in [0,1]).

- O'(LI?) is a gate controlled by x, which decides
if y should take the value a or b.

Long Short Term Memory (LSTM)

CURRENT HIDDEN h; |= ¢; - OtA
STATE (LIKE IN RNN) Oz
,4- <«—T; OUTPUT GATE
\ “control if the output
h+_1 should be produced”

$t—>@—> Cell YCt = [t Ct—1 + Gt - U4

he_1 FORGET GATE
“control if memory

should be erase” o < T4 INPUT GATE
. “control if input is

INPUT TRANSFORM -> |9 ht—1 useful
“transform the input”

27

PREVIOUS HIDDEN h;_1 | |+ CURRENTINPUT
STATE (LIKE IN RNN) (LIKE IN RNN)

LSTM unit in Torch

from Wojciech Zaremba github (wojzaremba/lstm) + nngraph:

function Lstmcell(input, prevh)

.Linear(nhid, 4 * nhid)(input)
.Linear(nhid, 4 * nhid)(prevh)
.CAddTable()({i2h, h2h})
.Reshape(4,nhid)(gates)
.SplitTable(2)(gates)

Local i2h =
Local h2h =
Local gates =
gates
gates =

Local ingate

nn
nn
nn

= nn

nn

= nn

Local intransform = nn

Local forgetgate

Local outgate
Local nextc =
1)

Local nexth =

end

= nn
= nn

.Sigmoid()(nn.SelectTable(1l)(gates))
.Tanh()(nn.SelectTable(2)(gates))
.Sigmoid()(nn.SelectTable(3)(gates))
.Sigmoid()(nn.SelectTable(4)(gates))

nn.CAddTable()({
nn.CMulTable()({forgetgate, prevc}),
nn.CMulTable()({ingate, intransform})

nn.CMulTable()({outgate, nn.Tanh()(nextc)})
return {nextc, nexth}

LSTM for speech recognition

Table 1. TIMIT Phoneme Recognition Results. ‘Epochs’ is
the number of passes through the training set before conver-
gence. ‘PER’ is the phoneme error rate on the core test set.

NETWORK WEIGHTS EPOCHS PER

CTC-3L-500H-TANH 3.7M 107 37.6%
CTC-1L-250H 0.8M 82 23.9%
CTC-1L-622H 3.8M 87 23.0%
CTC-2L-250H 2.3M 55 21.0%
CTC-3L-421H-UNI 3.8M 115 19.6%
CTC-3L-250H 3.8M 124 18.6%
CTC-5L-250H 6.8M 150 18.4%
TRANS-3L-250H 4.3M 112 18.3%
PRETRANS-3L-250H 4.3M 144 17.7 %

Graves et. al., 2014: Speech Recognition with Deep Recurrent Neural Networks

Gated Recurrent Network (GRU)

 LSTM is very popular and works well in practice.
 However it seems unnecessarily complicated

= GRU is a simplified version of LSTM which
performs as well in practice

Empirical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling; Chung et al., 2014

Gated Recurrent Network

—>
Z
//
Only 2 gates! _C}]L'\i’.r/_) E <7 IN
>QOUT

2 gates:
* r(t): control if the hidden should be reset
e 2(t) : control if the hidden should be updated

hy = tanh(Wax; + UDiag(rs)he—1)
ht = (]. — Zt)ht—l -+ Ztilt

GRU units in Torch

function grucell(input, prevh)

local
local
local

1)

gates
local
local
local

1))

local

1)

i2h = nn.Linear(nhid, 3 * nhid)(input)
h2h = nn.Linear(nhid, 3 * nhid)(prevh)
gates = nn.CAddTable()({

nn.Narrow(2, 1, 2 *¥ nhid)(iz2h),
nn.Narrow(2, 1, 2 * nhid)(h2h),

= nn.SplitTable(2)(nn.Reshape(2, nhid)(gates))
resetgate = nn.Sigmoid()(nn.SelectTable(l)(gates))
updategate = nn.Sigmoid()(nn.SelectTable(2)(gates))
output = nn.Tanh()(nn.CAddTable()({
nn.Narrow(2, 2 * nhid+1, nhid)(i2h),
nn.CMulTable()({resetgate,
nn.Narrow(2, 2 * nhid+1, nhid)(h2h), })

nexth = nn.CAddTable()({ prevh,
nn.CMulTable()({ updategate,
nn.CSubTable()({output, prevh,3}),?}),

return nexth

end

Structurally constrained Network (Mikolov
et al, 2014)

* A even simpler model than GRU
* Key idea:

— Instead of using gating, why not having two types of
hidden variable:

e regular ones (similar to RNN)
* Linear ones (able to capture long term dependencies)

Mikolov et.al., 2014: Learning Longer Memory in Recurrent
Neural Networks

Structurally constrained network

Y]
/\
[St @)
B
N
e This is the full model
* No gating:
St — (1 — Oé)BZEt + QS¢_1,
ht = O (PSt + Aﬂi‘t + Rht_l) y
Yy = [f(Uhy+Vsy)

SCRN in torch

require ‘nngraph’
local a = 0.9
Local nhid = 100
local nstr 40

Local input = nn.Identity()()
Local prevh = nn.Identity()()
Local prevs = nn.Identity()()

Local h2h = nn.Linear(nhid, nhid, false)(prevh)

Local s2h = nn.Linear(nstr, nhid, false)(prevs)

Local i2h = nn.LookupTable(ninput, nhid)(input)

Local i2s = nn.LookupTable(ninput, nstr)(input)

Local h = nn.Sigmoid()(nn.CAddTable()({i2h, h2h, s2h})

Local s = nn.CAddTable(){mn.Mul(1-a)(i2s), nn.Mul(a)(prevs)}

Local y = nn.Linear(nhid + nstr, nvoc, false)(nn.ConcatTable{h,s})

scrn = nn.gModule({prevh, prevs, input}, {h, s, v})

SCRN In practice

N-gram - 141
N-gram + cache - 125
SRN 100 129
LSTM 100 (x4 parameters) 115
SCRN 100 + 40 115

* Performs as well as LSTM on Penn TreeBank
e Perform a bit worse on text8 (~ 5 ppl worse)
- Suggests that most of the long term dependency captured
by LSTM is same as with RNN + bag of words.

Extensions to other domains

e So far, we mostly talked about language
modeling

* How to apply them to other domains?
— Machine translation
— Image captioning
— Frame prediction in videos

Machine Translation

Learn from example how to translate sentences
between a source language and a destination language

The two sentences may have different length
— Cannot apply RNN directly

2 solutions:

— Condition prediction of each word in destination sentence
by the source sentence (Bahdanau et al. 2014)

— Condition prediction of the whole destination sentence by
the source sentence (Sutskever et al. 2014)

Word level conditioning

* Simple idea:
— Use the RNN on the destination language
— Condition each word by the source sentence
— Example: Bag of word

— Limitation of BoW: every words in the source
sentence has the same weight = Learn the
weights

Word level conditioning
Yeir W

Each prediction y(t) is condition by a
vector c(t) such that:

Ct = E b
k

c(t) = weighted sum of the
representation of source words.

destination: . . .

If weights are equal 2 BoW.

h. = h.B> h.m> —h Attention mechanism: Make the
1 2 3 T : i

weights depends on the relation
between source and destination
h1 - h2 N h3 - - hT representations:

source: Xl X2 X3 """ XT """ At = eXp(Gtk)/ E;GXP(@M)

e = f(5¢, hi)

“Neural machine translation by jointly learning to align and translate”; D Bahdanau et al. 2014

Sentence level conditioning

* Simple idea:
— process the source sentence with an RNN

— use the states of the hidden layers to condition a
RNN on the destination sentence

— Drawback: requires massive RNN to remember
information about source sentence

w X Y Z <EOS>
A A A A A
—> —> —> > —> —> —>
T T T A A A A A
A B C <EOS> w X Y Z

Sutskever at. al., 2014: Sequence to Sequence Learning with Neural Network

Machine Translation

Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45
Baseline System [29] 33.30
Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59
Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

State-of-the-art WMT’14 result: 37.0

Sequence to Sequence Learning with Neural Network, Sutskever at. al., 2014

Image Captioning

Same idea

Condition the RNN on an image feature (CNN):

— either at each word prediction
— or at the beginning of the sentence

Lot of papers:
— Mao et al. 2014,

— Karpathy et al. 2014,
— Xu et al. 2015...

with all possible variants of conditioning

Example of captioning model

A group of young people
ih) ih) i) iy ih)

LSTM

Show and Tell: A Neural Image Caption Generator, Vinyals et al., CVPR 2015

Image captioning: examples

A square with burning street lamps Tourists are sitting at a long table

and a street in the foreground; Z‘::;;_Whlte table cloth and are

_ RN | i - _2. = harelon

A dry landscape with green trees and
bushes and light brown grass in the
foreground and reddish-brown round rock

domes and a blue sky in the background;

A blue sky in the background;

Deep captioning with multimodal recurrent neural networks, Mao et al. 2014

Image captioning?

* |ssue: The datasets are quite small (flickr8k, flickr30K,
COCO80K)

e Larry Zitnick, Organizer of the caption challenge:
“35% - 85% of captions are identical to training captions”

* |s “captioning” simply sentence retrieval?

Nearest neighbor for captioning

A black and white cat sitting in a Two zebras and a giraffe in a field.
bathroom sink.

Exploring Nearest Neighbor Approaches for Image Captioning, Devlin et al., ArXiv
1505.04467, 2015

Retrieval with alignment

40.7 (DOBJ, sunglasses, wearing) } g 46.5 (AMOD, white, dog) 40.1 (PREP ON, bike, person)

20.6 (DET, a, baby)) 32.0 (NSUBJ, dog, jumping) | 35.6(DET, a, bike)
19.0 (NSUBYJ, baby, sits) & 20.5 (CONJ AND, black, white) g 34.2 (PREP IN, midair, bike)
18.6 (PREP ON, lap, sits) 19.2 (DOBYJ, ball, catch) 8.3 (PREP IN, blue, person)
10.6 (VMOD, wearing, baby) 16.5 (NN, tennis, ball) 4.7 (DET, a, person)
8.1 (AMOD, small, baby) | 15.2 (DET, a, ball)
7.9 (POSS, adult, lap) 14.5 (PREP IN, air, jumping)
6.0 (DET, an, adult) 7.7 (DET, the, air)
4.2 (VMOD, trying, air)
3.5 (DET, a, dog)
1. A small baby wearing sunglasses sits on an adult's lap 1. A white and black dog is jumping in the air 1. A person in blue on a bike in midair
2. A woman holds a fat baby with sunglasses and a hat trying to catch a tennis ball 2. Man on a dirt bike

Deep Fragment Embeddings for Bidirectional Image Sentence Mapping; Karpathy et al.
2014

Frame prediction in videos

e RNN can also be used in the continuous
domain

* Example:
— Frame prediction in videos

— Allows unsupervised learning of visual features!

— Consider the video as a sequence and try to
predict the next frames (Ranzato et al. 2014,
Matthieu et al., 2015)

Frame prediction in videos

e Extract a CNN feature from
a patch in a frame

* RunaRNNontopto
predict how it will change

Video (language) modeling: a baseline for generative models of natural videos; Ranzato et al. 2014

Summary: RNN

RNNs are simple sequence prediction models

They can be trained efficiently on large corpus of
data (with GPUs)

They are state-of-the-art language models

Successfully applied to speech, machine
translation and computer vision

Limitations

* RNNs only works on tasks where other ML
methods would also work a bit. They just work
better

* They are mostly compressing the data they
have seen during training = No real language
understanding

Promising future research directions

* Evaluating the capacity of these model to
perform simple reasoning tasks

* Can we build dialogue agents based on these
networks?

* Can we learning algorithms from examples?

Promising future research directions

* Simple environment to test the capacity of these
models:

— Persistent environment based on language:

* A roadmap towards machine intelligence, Mikolov et al.
2015

 MazeBase: A Sandbox for Learning from Games, Sukhbaatar,
2015

— Set of simple tasks to test the limit of RNNs:

* Towards Al-Complete Question Answering: A Set of
Prerequisite Toy Tasks, Weston et al, 2015

Promising future research directions

* Learning algorithms form example:
— Neural Turing Machine, Graves et al. 2015

— Inferring algorithmic patterns with stack-

augmented recurrent nets, Joulin and Mikolov
2015

— Learning Simple Algorithms from Examples,
Zaremba et al. 2015

— End-To-End Memory Networks, Sukhbaatar et al.
2015

Thank you

