
HKN CS 61A Final
Review

Spring 2015

Austin Le
Sherdil Niyaz

Allen Li
Mike Ambrose

Hello!
Hosted by HKN (hkn.eecs.berkeley.edu)

Office hours from 11AM to 5PM in 290 Cory, 345 Soda
Check our website for exam archive, course guide, course surveys, tutoring
schedule (hkn.eecs.berkeley.edu/tutor)

DISCLAIMER: This is an unofficial review session and HKN is not affiliated with this course. All of the
topics we are reviewing will reflect the material you have covered, our experiences in CS 61A, and
past exams. We make no promise that what we cover will necessarily reflect the content of the final.
Some members of the course staff may be presenting, but this review is still not official.

Agenda
● Environment diagrams
● Linked lists
● Trees
● Orders of growth
● Object-oriented programming
● Streams
● Iterators/Generators
● Scheme
● SQL

Unfortunately, we cannot cover everything that is within scope for the final.
This is not necessarily an exhaustive list of things to study! Check out the
official details on Piazza and on cs61a.org.

Follow along! http://tinyurl.
com/ld2wej9

Environment
Diagrams

Environment diagrams

- Evaluate the right side first
- New frame when you call a function
- When you’re assigning a primitive

expressions to a variable, write the value
inside the box

- Anything else, draw an arrow
- Don’t forget parent frames

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Environment Diagrams

Linked Lists

Linked Lists
class Link:
 empty = ()

 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest

 def __len__(self):
 return 1 + len(self.rest)

def __repr__(self):

 return "Link({}, {})".format(self.first, self.rest)

Linked Lists: Swap Pairs
Write the function swap_pairs which will take in a linked list and swap every pair
of entries. (Assume there is an even number of entries.)

def swap_pairs(lst):

 """

 >>> a = Link(2, Link(1, Link(4, Link(3, Link(6, Link(5))))))

 >>> swap_pairs(a)

 >>> a

 Link(1, Link(2, Link(3, Link(4, Link(5, Link(6, ()))))))

 """

Linked Lists: Swap Pairs Solution
def swap_pairs(lst):

if lst != Link.empty:

 lst.first, lst.rest.first = lst.rest.first, lst.first

 swap_pairs(lst.rest.rest)

Linked Lists: Swap Pairs Solution
def swap_pairs(lst):

if lst != Link.empty:

 lst.first, lst.rest.first = lst.rest.first, lst.first

 swap_pairs(lst.rest.rest)

Iterative Solution:
def swap_pairs(lst):

while lst != Link.empty:

 lst.first, lst.rest.first = lst.rest.first, lst.first

 lst = lst.rest.rest

Swap Pairs without Mutation
What if don’t want to the change the original list?

def swap_pairs(lst):

 if lst == Link.empty:

 return lst

 return Link(lst.rest.first, Link(lst.first,
swap_pairs(lst.rest.rest)))

Linked Lists: Double Double

def double_double(lst):

 """

 >>> a = Link(1, Link(2, Link(3)))

 >>> double_double(a)

 >>> a
 Link(2, Link(2, Link(4, Link(4, Link(6, Link(6, ()))))))

 """

Linked Lists: Double Double
Fill in the blank

def double_double(lst):

 if lst != Link.empty:

 lst.first = ________

 double_double(________)

 lst.rest = Link(_________, lst.rest)

Linked Lists: Double Double
Fill in the blank

def double_double(lst):

 if lst != Link.empty:

 lst.first = 2*lst.first

 double_double(________)

 lst.rest = Link(_________, lst.rest)

Linked Lists: Double Double
Fill in the blank

def double_double(lst):

 if lst != Link.empty:

 lst.first = 2*lst.first

 double_double(lst.rest)

 lst.rest = Link(_________, lst.rest)

Linked Lists: Double Double
Fill in the blank

def double_double(lst):

 if lst != Link.empty:

 lst.first = 2*lst.first

 double_double(lst.rest)

 lst.rest = Link(lst.first, lst.rest)

Trees

Trees
class Tree:
 def __init__(self, entry, branches=()):

 self.entry = entry

 self.branches = branches

def __repr__(self):

if self.branches:

return ‘Tree({0}, {1})’.format(repr(self.entry), repr(self.branches))

else:

return ‘Tree({0})’.format(repr(self.entry))

Trees: Insert Everywhere
Define insert_everywhere, a function that will add a node with the given value as
a child of every internal (non-leaf) node of a tree.

def insert_everywhere(t, val):

5

6 7

4 3 2

5

6 7

4 3 21

1

1

insert_everywhere(t, 1)

Trees: Insert Everywhere
Complete the implementation below.

def insert_everywhere(t, val):

if not t.branches:

 return

 for child in t.branches:

 insert_everywhere(child, val)

 __

Trees: Insert Everywhere

def insert_everywhere(t, val):

if not t.branches:

 return

 for child in t.branches:

 insert_everywhere(child, val)

 t.branches.append(Tree(val))

Trees: Greater Than
Write a function that compares two trees of identical structure, returning the
number of nodes from t1 that have larger entries than the corresponding nodes
in t2.
def tree_greater_than(t1, t2):

3

2 7

5 4 6

5

6 4

1 5 2

t1 t2

t1 > t2 = 3

Trees: Greater Than Solution
def tree_greater_than(t1, t2):

if t1.entry > t2.entry:

 count = 1

 else:

 count = 0

 for i in range(len(t1.branches)):

 count += tree_greater_than(t1.branches[i],

t2.branches[i])

 return count

Orders of Growth

Orders of Growth
The limiting behavior of a function when the argument
tends towards a particular value or infinity, usually in terms
of simpler functions

Big Θ notation is used to classify algorithms by how they
respond (e.g., in their processing time or working space
requirements) to changes in input size.

Orders of Growth - Merge Sort

Orders of Growth - Merge Sort

Orders of Growth - Merge Sort

Θ(nlogn)

Orders of Growth

Orders of Growth

We make n calls to G(n-1), each of which makes n-1 calls to G(n-2), each of
which makes n-2 calls to G(n-3), and so on until we reach n == 1.
So, the number of calls to G(n) = n * (n-1) * (n-2) …. = n! = Θ(n!)

Object-Oriented
Programming

Object Oriented Programming

● Objects: an abstract data type (ADT)
● Lets us structure our data

OOP: Variables

● Class Variables
○ Associated with the class itself

● Instance Variables
○ Associated with an instance of the class

● Local Variables
○ Variables that are local to a method

OOP: Variables
>>> Foo.class_var

1

>>> Foo.inst_var

Error

>>> f = Foo()

>>> f.class_var

1

>>> f.instance_var

2

>>> f.local_var

Error

class Foo(object):

 class_var = 1

 def __init__(self):

 self.inst_var = 2

 def bar(self):

 local_var = 3

OOP: What would Python print?
class Plant(object):

 color = 'green'

 def __init__(self, color):

 self.color = color

 self.seeds = 0

 def fruit(self):

 self.seeds += 1

class BlueBerry(Plant):

 def __init__(self):

 Plant.__init__(self, 'blue')

 def fruit(self):

 self.seeds += 5

>>> Plant.color

???

>>> Plant.seeds

???

>>> BlueBerry.seeds

???

>>> b = BlueBerry()

>>> b.color

???

>>> BlueBerry.color

???

>>> b.seeds

???

>>> b.fruit()

>>> b.seeds

???

OOP: What would Python print?
class Plant(object):

 color = 'green'

 def __init__(self, color):

 self.color = color

 self.seeds = 0

 def fruit(self):

 self.seeds += 1

class BlueBerry(Plant):

 def __init__(self):

 Plant.__init__(self, 'blue')

 def fruit(self):

 self.seeds += 5

>>> Plant.color

'green'

>>> Plant.seeds

Error

>>> BlueBerry.seeds

Error

>>> b = BlueBerry()

>>> b.color

'blue'

>>> BlueBerry.color

'green'

>>> b.seeds

0

>>> b.fruit()

>>> b.seeds

5

Streams

Streams

● Streams are a way to represent infinite (or
very long) sequences

Streams
Write a procedure combine_streams that takes in two (infinite) streams s1, s2,
and a two-argument function combiner returns a new stream that is the result of
adding elements from s1 by elements from s2. For instance, if s1 was (1, 2, 3,
...), s2 was (2, 4, 6, ...), and combiner was lambda x, y: x * y then the
output would be the stream (2, 8, 18, ...).

def combine_streams(s1, s2, combiner):

Streams
Write a procedure combine_streams that takes in two (infinite) streams s1, s2,
and a two-argument function combiner returns a new stream that is the result of
adding elements from s1 by elements from s2. For instance, if s1 was (1, 2, 3,
...), s2 was (2, 4, 6, ...), and combiner was lambda x, y: x * y then the
output would be the stream (2, 8, 18, ...).

def combine_streams(s1, s2, combiner):

 def compute_rest():

 return combine_streams(s1.rest, s2.rest, combiner)

 return Stream(combiner(s1.first, s2.first), compute_rest)

Streams
Write a procedure loopify that takes as input a finite stream and returns an
infinite stream with that stream infinitely repeated. For example, if stream were
a stream (1, 2, 3), loopify would return a stream (1, 2, 3, 1, 2, 3,
1, 2, 3, …)

def loopify(stream):

Streams
Write a procedure loopify that takes as input a finite stream and returns an
infinite stream with that stream infinitely repeated. For example, if stream were
a stream (1, 2, 3), loopify would return a stream (1, 2, 3, 1, 2, 3,
1, 2, 3, …)

def loopify(stream):
 first_stream = Stream(stream.first, lambda: next_stream(stream.rest))
 def next_stream(rest):
 if rest == Stream.empty:
 return first_stream
 return Stream(rest.first, lambda: next_stream(rest.rest))
 return first_stream

Iterators &
Generators

Iterators/Generators
● An iterable

○ is an object that has an __iter__ method which returns an iterator.
● An iterator

○ is an object that can be iterated over using its __next__ method.
○ must implement both __next__ and __iter__

Useful analogy: a book is an iterable; a bookmark is an iterator.
● A generator is

○ an iterator returned by a generator function
○ a call to __next__ on a generator executes the function’s body until it

reaches the yield and then pauses there until the next call.
● A generator function is

○ a function that contains a yield statement to return a value

Iterators/Generators
class StrangeIterator:

def __init__(self):

""" YOUR CODE HERE """

def __next__(self):

""" YOUR CODE HERE """

def __iter__(self):

""" YOUR CODE HERE """

>>> strange_obj = StrangeIterable()

>>> elems = []

>>> for i in strange_obj:

... elems.append(i)

>>> elems

[1, 3, 6, 10, 15, 21, 28, 36, 45]

class StrangeIterable:

def __init__(self):

pass

def __iter__(self):

""" YOUR CODE HERE """

Any iterable object must have a __iter__ that returns
an iterator which must have a __next__.

Iterators/Generators
class StrangeIterator:

def __init__(self):

self.start = 0

self.step = 1

def __next__(self):

if self.step >= 10:

raise StopIteration

self.start += self.step

self.step += 1

return self.start

def __iter__(self):

return self

class StrangeIterable:

def __init__(self):

pass

def __iter__(self):

return StrangeIterator()

Iterators/Generators
def mystery_gen():

"""
>>> mg = mystery_gen()
>>> next(mg)
[1]
>>> next(mg)
[2, 2]
>>> next(mg)
[4, 4, 4, 4]
>>> next(mg)
[8, 8, 8, 8, 8, 8, 8, 8]
>>> next(mg)
Traceback (most recent call last):
 …
StopIteration
"""

Iterators/Generators
def mystery_gen():

n_of_n = [1]

while n_of_n[0] < 9:

yield n_of_n

next_n = n_of_n[0] * 2

n_of_n = [next_n] * next_n

Scheme

What Would Scheme Print?
scm> (cons `(list 1 2 3) (cons 4 (cons 5 nil)))

scm> (or `false #f 0)

What Would Scheme Print?
scm> (cons `(list 1 2 3) (cons 4 (cons 5 nil)))

((list 1 2 3) 4 5)

scm> (or `false #f 0)

What Would Scheme Print?
scm> (cons `(list 1 2 3) (cons 4 (cons 5 nil)))

((list 1 2 3) 4 5)

scm> (or `false #f 0)

false

What Would Scheme Print?
scm> (define magic ((lambda (x) (lambda (y) (* x y))) 3))

scm> (magic 4)

What Would Scheme Print?
scm> (define magic ((lambda (x) (lambda (y) (* x y))) 3))

magic

scm> (magic 4)

What Would Scheme Print?
scm> (define magic ((lambda (x) (lambda (y) (* x y))) 3))

magic

scm> (magic 4)

12

What Would Scheme Print?
scm> (define f (mu (x) (* x y)))

f

scm> (define g (mu (x y z) (list (f z) w (f x))))

g

scm> (define h (lambda (w x y) (* (car (g w w x)) (f x))))

h

scm> (h 2 3 4)

What Would Scheme Print?
scm> (define f (mu (x) (* x y)))

f

scm> (define g (mu (x y z) (list (f z) w (f x))))

g

scm> (define h (lambda (w x y) (* (car (g w w x)) (f x))))

h

scm> (h 2 3 4)

(* (car (g 2 2 3)) (f 3))

→ (* (car (list (f 3) 2 (f 2))) (f 3))

→ (* (car (list 6 2 4)) (f 3))

→ (* 6 12)

→ 72

Scheme
Implement deep-remove-all, which removes all instances of val from the
given lst, which may contain nested lists. Assume all of the elements are
integers.

(define (deep-remove-all val lst)

`YOUR-CODE-HERE)

scm> (deep-remove-all 3 `(8 (1 3 3 3 2) 3 (4 3 (3 2 (3 1)))))

(8 (1 2) (4 (2 (1))))

Scheme
(define (deep-remove-all val lst)

(cond ((null? lst) lst)

 ((list? (car lst))

 (cons (deep-remove-all val (car lst)) (deep-remove-all val (cdr lst))))

 ((= val (car lst))

 (deep-remove-all val (cdr lst)))

 (else (cons (car lst) (deep-remove-all val (cdr lst)))))

)

It’s okay to use = here since we were guaranteed the elements were integers.

eq? and equal? would work too.

SQL

SQL
create table costs as

select "Warbot" as name, 1 as cost union
select "Puddlestomper", 2 union
select "Blingtron 3000", 5 union
select "Annoy-o-tron", 1 union
select "Jeeves", 3 union
select "Madder Bomber", 5 union
select "Piloted Shredder", 4;

create table attacks as
select "Warbot" as name, 1 as attack union
select "Puddlestomper", 3 union
select "Blingtron 3000", 3 union
select "Annoy-o-tron", 1 union
select "Jeeves", 1 union
select "Madder Bomber", 5 union
select "Piloted Shredder", 4;

create table armors as
select "Warbot" as name, 3 as armor union
select "Puddlestomper", 2 union
select "Blingtron 3000", 4 union
select "Annoy-o-tron", 2 union
select "Jeeves", 4 union
select "Madder Bomber", 4 union
select "Piloted Shredder", 3;

#1: Write a SQL statement to create a new table
called cards that combines all 3 tables.

#2: Write a SQL query to get all of the cards whose
attack is less than 4 and whose armor is greater
than 2, in ascending order of cost.

SQL
#1: Write a SQL statement to create a new table called cards that combines all 3 tables.

SQL
#1: Write a SQL statement to create a new table called cards that combines all 3 tables.

sqlite> create table cards as
 select costs.name, cost, attack, armor from costs, attacks, armors
 where costs.name = attacks.name and attacks.name = armors.name;

The table looks something like this:

create table cards as
select "Warbot" as name, 1 as cost, 1 as attack, 3 as armor union
select "Puddlestomper", 2, 3, 2 union
select "Blingtron 3000", 5, 3, 4 union
select "Annoy-o-tron", 1, 1, 2 union
select "Jeeves", 3, 1, 4 union
select "Madder Bomber", 5, 5, 4 union
select "Piloted Shredder", 4, 4, 3;

SQL
#2: Write a SQL query to output the name and cost of all cards whose attack is less than 4 and
whose armor is greater than 2, in ascending order of cost.

SQL
#2: Write a SQL query to output the name and cost of all cards whose attack is less than 4 and
whose armor is greater than 2, in ascending order of cost.
Hint: Use the table you wrote in problem #1.

SQL
#2: Write a SQL query to output the name and cost of all cards whose attack is less than 4 and
whose armor is greater than 2, in ascending order of cost.
Hint: Use the table you wrote in problem #1.
sqlite> select name, cost from cards

 where attack < 4 and armor > 2
 order by cost;

Warbot|1
Jeeves|3
Blingtron-3000|5

SQL
#2: Write a SQL query to output the name and cost of all cards whose attack is less than 4 and
whose armor is greater than 2, in ascending order of cost.
Hint: Use the table you wrote in problem #1.
sqlite> select name, cost from cards

 where attack < 4 and armor > 2
 order by cost;

Warbot|1
Jeeves|3
Blingtron-3000|5

Alternate solution without the table from problem #1 written already:
sqlite> with
 cards(name, cost, attack, armor) as (

 select costs.name, cost, attack, armor from costs, attacks, armors
 where costs.name = attacks.name and attacks.name = armors.name
)
 select name, cost from cards

 where attack < 4 and armor > 2
 order by cost;

SQL
create table costs as

select "Warbot" as name, 1 as cost union
select "Puddlestomper", 2 union
select "Blingtron 3000", 5 union
select "Annoy-o-tron", 1 union
select "Jeeves", 3 union
select "Madder Bomber", 5 union
select "Piloted Shredder", 4;

create table attacks as
select "Warbot" as name, 1 as attack union
select "Puddlestomper", 3 union
select "Blingtron 3000", 3 union
select "Annoy-o-tron", 1 union
select "Jeeves", 1 union
select "Madder Bomber", 5 union
select "Piloted Shredder", 4;

create table armors as
select "Warbot" as name, 3 as armor union
select "Puddlestomper", 2 union
select "Blingtron 3000", 4 union
select "Annoy-o-tron", 2 union
select "Jeeves", 4 union
select "Madder Bomber", 4 union
select "Piloted Shredder", 3;

#3: Write a SQL query that outputs the names of a
pair of cards a and b where a.attack >= b.armor
and b.attack >= a.armor.
Do NOT use the table from #1.

Expected output:
 Blingtron 3000 trades with Piloted Shredder
 Madder Bomber trades with Madder Bomber
 Madder Bomber trades with Piloted Shredder
 Piloted Shredder trades with Blingtron 3000
 Piloted Shredder trades with Madder Bomber
 Piloted Shredder trades with Piloted Shredder
 Piloted Shredder trades with Puddlestomper
 Puddlestomper trades with Puddlestomper
 Puddlestomper trades with Piloted Shredder

(Fun fact: In Hearthstone, this is called a trade, since both
cards die as a result of one card attacking the other.)

SQL
#3: Write a SQL query that outputs the names of a pair of cards a and b where a.attack >= b.armor
and b.attack >= a.armor.
Do NOT use the table from #1.

sqlite> select a_att.name || " trades with " || b_att.name
from attacks as a_att, attacks as b_att, armors as a_arm, armors as b_arm
where a_att.attack >= b_arm.armor and b_att.attack >= a_arm.armor

 and a_att.name = a_arm.name and b_att.name = b_arm.name;

Blingtron 3000 trades with Piloted Shredder
Madder Bomber trades with Madder Bomber
Madder Bomber trades with Piloted Shredder
Piloted Shredder trades with Blingtron 3000
Piloted Shredder trades with Madder Bomber
Piloted Shredder trades with Piloted Shredder
Piloted Shredder trades with Puddlestomper
Puddlestomper trades with Puddlestomper
Puddlestomper trades with Piloted Shredder

SQL
create table costs as

select "Warbot" as name, 1 as cost union
select "Puddlestomper", 2 union
select "Blingtron 3000", 5 union
select "Annoy-o-tron", 1 union
select "Jeeves", 3 union
select "Madder Bomber", 5 union
select "Piloted Shredder", 4;

#4: Write a SQL query that outputs all subsets and
their total costs of cards whose total costs are at
least 7.

(Hint #1: Use recursion!)
(Hint #2: it might help to put the cards of each
subset in a particular order!)

SQL
#4: Write a SQL query that outputs all subsets and their total costs of cards whose total costs are at
least 7.
(Hint #1: Use recursion!)
(Hint #2: it might help to put the cards of each subset in a particular order!)

sqlite> with sums(names, total, last_cost) as (
 select name, cost, cost from costs union
 select names || ", " || name, total + cost, cost
 from sums, costs
 where cost > last_cost
)

 select names, total from sums where total >= 7 order by total;

Conclusion

This was HKN’s second ever CS 61A Final
Review Session. Please fill out the feedback
forms to help us improve future reviews.

Thanks for coming, and best of luck on the
final!

