In this lecture, we prove that the CLIQUE problem is NP-complete. A clique is a set of pairwise adjacent vertices; so what's the CLIQUE problem:

CLIQUE: Given a graph \(G(V,E) \) and a positive integer \(k \), return 1 if and only if there exists a set of vertices \(S \subseteq V \) such that \(|S| \geq k \) and for all \(u,v \in S \) \((u,v) \in E\).

We'll prove the theorem below by first showing CLIQUE is in NP, then giving a Karp reduction from 3-SAT to CLIQUE. (3-SAT \(\leq_p \) CLIQUE).

Theorem 1. CLIQUE is NP-complete.

Proof.

1. To show CLIQUE is in NP, our verifier takes a graph \(G(V,E) \), \(k \), and a set \(S \) and checks if \(|S| \geq k \) then checks whether \((u,v) \in E\) for every \(u,v \in S \). Thus the verification is done in \(O(n^2) \) time.

2. Next we need to show that CLIQUE is NP-hard; that is we need to show that CLIQUE is at least as hard any other problem in NP. To do so, we give a reduction from 3-SAT (which we’ve shown is NP-complete) to CLIQUE. Our goal is the following:

Given an instance \(\phi \) of 3-SAT, we will produce a graph \(G(V,E) \) and an integer \(k \) such that \(G \) has a clique of size at least \(k \) if and only if \(\phi \) is satisfiable.

Let \(\phi \) be a 3-SAT instance and \(C_1, C_2, ..., C_m \) be the clauses of \(\phi \) defined over the variables \(\{x_1, x_2, ..., x_n\} \).

What we need to do is construct an instance of CLIQUE (a graph) that would somehow capture the satisfiability of the clauses of \(\phi \).

We will represent every clause \(C_i \) as \(C_i = \{z_{i1}, z_{i2}, ..., z_{it}\} \) where each \(z_{ij} \) represents a literal in \(C_i \). Since \(\phi \) is a 3-SAT instance, we know that \(t \leq 3 \).

We construct a graph \(G(V,E) \) by adding \(t \) vertices for every clause \(C_i = \{z_{i1}, z_{i2}, ..., z_{it}\} \). In total this takes \(O(t \cdot m) = O(m^2) \) time since \(t \leq 3 \). Then for every pair of vertices \(v_{ab}, v_{cd} \) in \(G \), we will add the edge \((v_{ab}, v_{cd})\) if and only if we satisfy two conditions:

\[
\begin{align*}
a \neq c \\
z_{ab} \neq \neg z_{cd}
\end{align*}
\]

What do these two conditions mean? Well (1) implies that the literals \(z_{ab}, z_{cd} \) corresponding to the vertices \(v_{ab}, v_{cd} \) respectively belong to different clauses \(C_a \neq C_c \) in \(\phi \). The second condition implies that both literals can be satisfied simultaneously. This step of the construction takes \(O(m^2) \) time. The final step is to determine the value of \(k \); we will set \(k \) to be \(m \), the number of clauses in \(\phi \).

Now I claim that \(\phi \) is satisfiable if and only \(G \) as constructed above has a clique of size at least \(k = m \).

First suppose \(\phi \) is satisfiable. Then there exists a satisfying assignment \((x_1^*, x_2^*, ..., x_n^*)\) such that every clause \(C_i \) in \(\phi \) is satisfied. Notice that to satisfy a clause \(C_i \), we just need one of its literals in \(\{z_{i1}, z_{i2}, ..., z_{it}\} \) to be satisfied. We iterate through the clauses and choose one satisfied literal from every clause which we denote by \((z_1^*, z_2^*, ..., z_m^*)\). Let \(v_1, v_2, ..., v_m \) be the corresponding vertices in \(G \) to the satisfied literals we selected.
The set $S = \{v_1, v_2, ..., v_m\}$ must form an m-clique in G. Why? Well notice that $z_1^*, z_2^*, ..., z_m^*$ all have the same truth assignment, since otherwise $z_i^* = \neg z_j^*$ for some $i, j \in [1, m]$ thus implying that one of z_i^* and z_j^* is not the satisfying literal of C_i, C_j, a contradiction to our choice of the z^* literals. Notice also that the z^*'s belong to different clauses, that's how we chose them. Therefore, by the construction of G, every pair of $v_1, ..., v_n$ must have a connecting edge and thus $S = \{v_1, v_2, ..., v_m\}$ forms an m-clique in G.

Conversely, suppose G has a clique of size at least $m = k$. Let $v_1, v_2, ..., v_q$ be a clique in G of size $q \geq m$, then the first m vertices $v_1, ..., v_m$ must also form a clique in G. Since there are no edges connecting vertices from the same clause, every v_i corresponds to a literal z_i from exactly one clause C_i. Moreover, since $v_1, ..., v_m$ is a clique, the corresponding literals z_i, z_j of any pair $v_i, v_j \in \{v_1, ..., v_m\}$ can be satisfied simultaneously (by construction). Now, to construct a satisfying assignment $x_1, ..., x_n$ for ϕ, we just need to satisfy all of $z_1, ..., z_m$ and assign the remaining variables arbitrarily. Every C_i contains one z_i, and every z_i is satisfied thus every C_i is satisfied and so ϕ is satisfied.

To conclude, we’ve shown that CLIQUE is in NP and that it is NP-hard by giving a reduction from 3-SAT. Therefore CLIQUE is NP-complete.