
CSC373 Lecture Notes
Department of Computer Science

University of Toronto

Robert Robere

Winter 2014

1 Lecture 26/27 — Integer Programming and Approximation Ra-
tios

For the remainder of the course we will be focused on coping with NP-Hardness. Regardless of the fact
that we have all of these NP-Complete problems (and, in some sense, the theory explains why all of these
problems are difficult to solve) we still need some way to solve them. After all, these problems originally
came into study because we wanted to solve them (they appear frequently in a multitude of applications).
So, if P 6= NP and all of the NP-Hard problems do not have polynomial time algorithms, then a natural
question is: how well can we do at approximately solving these problems in polynomial time?

To explain these ideas a bit further, consider the following generalization of the vertex cover problem:

Problem 1. Minimum Vertex Cover
Input: A graph G = (V,E).
Problem: The size of the smallest vertex cover of G.

Since the Vertex Cover decision problem is NP-Complete, it follows that the Minimum Vertex Cover
problem is NP-Hard. But, the theory of NP-Hardness only applies to finding exact solutions. It could be
that there is a polynomial time algorithm A which outputs, for every graph G, a vertex cover at most 2
times larger than the smallest vertex cover of G. For many applications this could be sufficient!

Before we start discussing approximation algorithms, we need to formalize what we mean by “approxi-
mating” the solution of a problem. For the rest of the course we will be primarily interested in optimization
problems instead of the decision problems that we studied in complexity theory. An optimization problem
is an informal concept which means exactly what it suggests: instead of deciding whether an input has
some “substructure”, we want to find a substructure that minimizes or maximizes some objective function.
The Minimum Vertex Cover problem defined above is a natural optimization problem. Another natural
optimization problem is the Linear Programming problem.

Definition 1.1. Let P be an optimization problem in which we are trying to minimize some objective
function, and assume that for each input x of P thatOPT (x) is the optimal value of the solution for x. Let
A be some algorithm, and let 0 < α ≤ 1 be some real number. We say that A gives an α-approximation
for P if, for every input x of P ,

OPT (x) ≤ A(x) ≤ OPT (x)

α
.

We say that α is the approximation ratio for the algorithm A.

1

If instead P is a maximization problem, we say that A is an α-approximation for P if for every input x

OPT (x) ≥ A(x) ≥ αOPT (x).

In both cases the value α is called the approximation ratio of A.

So, what does this notion mean? Take the Minimum Vertex Cover problem as an example: if A is
an algorithm which, on every graph G, outputs a vertex cover of G with at most 2 times the number of
vertices, then we would say that A is a 1/2-approximation for Minimum Vertex Cover. Why? Following
the definition, this would imply A(G) ≤ 2OPT (G) for all graphs G, so choosing α = 1/2 satisfies the
above definition.

Many of the approximation algorithms that we will study will be obtained by way of integer linear
programming (ILP). In one sentence: an integer linear program is exactly the same as a linear program,
except some of the variables can be constrained to take on integer values. For example, here is an integer
linear program for the Minimum Weight Vertex Cover problem. There is a variable xi for each vertex i
in the input graph, and we write the program with the intution that xi = 1 if and only if i is in the vertex
cover.

min
n∑

i=1

xi

subject to xi + xj ≥ 1,∀(i, j) ∈ E
0 ≤ xi ≤ 1,∀i ∈ V
xi ∈ Z, ∀i ∈ V

We often collapse the last two constraints into one constraint: xi ∈ {0, 1}. This special case is often
call 0-1 Integer Programming. Make sure that you understand the integer program above! How can you
construct a vertex cover from a solution of the program? How can you create a solution to the program
from a vertex cover of the graph?

1.1 The Flexibility of Integer Programming
We introduce the optimization and decision variants of the Integer Programming Problem. Our definitions
assume that we are minimizing the objective function, but it is easy to modify them if we want to maximize
the objective function.

Problem 2. Integer Programming (Optimization)
Input: An integer linear program P with m linear constraints and n variables, with integrality constraints on
a subset of the variables.
Problem: Minimize the value of the objective function of P , subject to the linear and integrality constraints.

Problem 3. Integer Programming (Decision Version)
Input: An integer linear program P with m linear constraints and n variables, with integrality constraints on
a subset of the variables. An integer k.
Problem: 1 if and only if there is an assignment to the n variables satisfying all of the constraints and having
objective value at most k.

The following theorem is easy:

Theorem 1.2. Integer Programming (Decision Version) is NP-Complete.

2

Proof. NP-Hardness follows immediately from the integer linear program given for the Vertex Cover
problem in the previous section. To show that it is in NP, suppose we are given an integer program P
with m linear constraints and n variables (with some of the variables constrained to be integers). It is
easy to give a verifier V for P : the verifier receives P and a certificate y, and interprets the certificate y
as an assignment of numbers to the n variables. It checks if the assignment satisfies each of the m linear
constraints and the integrality constraints, and also if the objective function is less than the integer k. If
so, the verifier accepts, and otherwise it rejects.

Integer programming really is a wonderful NP-Complete problem. It is remarkably easy to write
many problems as integer programs. For example, here is the Maximum Clique problem (the natural
optimization variant of the Clique problem) as an integer linear program. If G = (V,E) is an input graph
to Maximum Clique, we introduce a variable xi for each vertex in the graph and eij for each pair of vertices
in the graph.

nmax
n∑

i=1

xi

subject to ∀(i, j) ∈ E xi + xj ≥ 2eij

∀(i, j) ∈ E xi + xj − 1 ≤ eij

∀(i, j) 6∈ E eij = 0

∀(i, j) ∈ E 0 ≤ eij ≤ 1

∀(i, j) ∈ E eij ∈ Z
∀i ∈ V 0 ≤ xi ≤ 1

∀i ∈ V xi ∈ Z

The last four constraints of this program are integrality constraints. The first constraint in the program
states that if we include an edge into the clique, then both of the vertices of the edge must be in the clique.
The second constraint states that if two vertices are in a clique, then the edge connecting them must also
be in a clique. The third constraints says that edges not in the graph cannot appear in the clique.

1.2 Integer Programming, Linear Programming and Approximation
There is a natural relationship between integer programs and linear programs. We can transform every
integer program P into a linear program, called the linear programming relaxation of P , where we simply
remove the integrality constraints from all of the variables. For example, if we remove the integrality
constraints in the Minimum Vertex Cover program above we get the following linear program:

min
n∑

i=1

xi

subject to xi + xj ≥ 1,∀(i, j) ∈ E
0 ≤ xi ≤ 1,∀i ∈ V.

We can solve this linear program in polynomial time using an interior point method, but the resulting
variables may not be integers. That is, in a solution to this linear program two variables could “share” the
responsibility of covering an edge (say, if they both have value 1/2). Note also that any solution to the

3

integer program is also a solution to the linear program (but not vice-versa, of course). This shows that
if LPOPT is the optimal value of a solution to the linear program and IPOPT is the optimal value of a
solution to the integer program then LPOPT ≤ IPOPT .

It turns out that there is a natural way to round the variables in a solution to the above linear program,
so as to get a 1/2-approximation for the Minimum Vertex Cover problem. Here is what we do: let
x∗1, x

∗
2, . . . , x

∗
n be an optimal solution to the linear programming relaxation of the Minimum Vertex Cover

integer program. For each edge (i, j) ∈ E it follows that x∗i + x∗j ≥ 1. Therefore, either x∗i ≥ 1/2 or
x∗j ≥ 1/2.

For i = 1, 2, . . . , n let yi = 1 if x∗i ≥ 1/2, and yi = 0 otherwise. We claim that y1, y2, . . . , yn is a
solution to the Minimum Vertex Cover integer program. To see this, first note that yi ∈ {0, 1} for each i.
By our argument before, we know that for every edge (i, j) ∈ E either x∗i ≥ 1/2 or x∗j ≥ 1/2, and so at
least one of yi, yj is 1 and the constraint yi + yj ≥ 1 will be satisfied.

Now, for each i we have yi ≤ 2x∗i . This implies that the value of the integral solution y1, y2, . . . , yn
will be

n∑
i=1

yi ≤ 2
n∑

i=1

x∗i = 2LPOPT ≤ 2IPOPT.

We have proven that the following (polynomial-time) algorithm gives a 1/2 approximation for the Mini-
mum Vertex Cover problem.

Algorithm 1: Min-Vertex Cover LP-Rounding
Input: A graph G = (V,E)
Solve the linear programming relaxation of the integer program for Min-Vertex Cover;
Let x∗1, x

∗
2, . . . , x

∗
n be the values of the variables in the previous solution;

for i = 1, 2, . . . , n do
yi = 0;
if x∗i ≥ 1/2 then

yi = 1;
end

end
return

∑n
i=1 yi

There is a simple example, pictured in Figure 1, which shows that this rounding algorithm can actually
do worse than the minimum possible vertex cover on some graphs. The minimum vertex cover for this

Figure 1: A hard graph for the rounding algorithm

4

graph is easy: just choose vertex 3 and vertex 4. However, the linear programming relaxation could instead
assign x1 = x2 = x3 = x4 = 1/2, for a total value of

∑4
i=1 xi = 2. The rounding algorithm will then

round all four of these variables to 1, and it will output a vertex cover containing every vertex in the graph
(which, note, is twice the size of the optimal vertex cover). This example shows that our analysis of this
rounding algorithm was tight.

To play with this concept a bit, it is helpful to look at different generalizations of the Vertex Cover
problem and see if anything changes with our approximation algorithm. One natural generalization is to
instead find a weighted minimum vertex cover:

Problem 4. Weighted Min-Vertex Cover
Input: A graph G = (V,E), and positive vertex weights w : V → R+.
Problem: A subset of vertices S ⊆ V such that S is a vertex cover and∑

v∈S
w(v)

is minimized.

How can you modify the integer program to take these vertex weights into account? Does our analysis of
the rounding algorithm have to change? (No! Verify this for yourself). It turns out that even if we add
positive vertex weights everywhere, our rounding algorithm will still give us a 1/2-approximation.

There is another natural generalization of the Weighted Minimum Vertex Cover problem, where along
with adding weights to the vertices we introduce positive costs on the edges. We now allow possible vertex
covers to leave some edges uncovered, but we have to pay the edge’s cost if we decide to do so.

Problem 5. Weighted Vertex Cover with Edge Penalties
Input: A graph G = (V,E), positive vertex weights w : V → R+ and positive edge costs c : E → R+.
Problem: A subset of vertices S ⊆ V such that∑

i∈S
w(i) +

∑
(i,j)∈E
i,j 6∈S

c(i, j)

is minimized.

It is straightforward to modify our integer program to account for these new edge costs. Alongside the
vertex variables we introduce edge variables eij , where we interpret eij = 1 whenever (i, j) is covered by
one of the vertices.

min
n∑

i=1

w(i)xi +
∑

(i,j)∈E

c(i, j)(1− eij)

subject to ∀(i, j) ∈ E, xi + xj ≥ eij

∀i ∈ V 0 ≤ xi ≤ 1

∀i ∈ V xi ∈ Z
∀(i, j) ∈ E 0 ≤ eij ≤ 1

∀(i, j) ∈ E ei,j ∈ Z

Now we have to round the values for both the edge and vertex variables. However, the values of the vertex
and edge variables are interdependent, so we will have to take that into account.

Here is a first approach. For each i, j let x∗i and e∗ij be the values of the variables in the optimal solution

5

to the above linear program. Round the edge variable e∗ij to 1 if its value is greater than 1/2, and otherwise
round it to 0. Let zij be the rounded value of the variable eij .

Now we need to decide how to round the x∗i variables. Well, we only need to consider the x∗i variables
which appear in inequalities with edge variables eij that were rounded to 1. In each of these inequalities
we must have x∗i +x

∗
j ≥ 1/2, so either x∗i ≥ 1/4 or x∗j ≥ 1/4. Therefore, for each i = 1, 2, . . . , n round x∗i

to 1 if x∗i ≥ 1/4, and all of the constraints will be satisfied in the rounded solution. Let yi be the rounded
value of x∗i according to this rounding scheme.

So, according to our rounding scheme we will have 1 − zij ≤ 2(1 − e∗ij) and yi ≤ 4x∗ij for each edge
(i, j) and each vertex i. It follows that the value of the rounded solution will be

n∑
i=1

w(i)yi +
∑

(i,j)∈E

c(i, j)(1− zij) ≤ 4
n∑

i=1

w(i)x∗i + 2
∑

(i,j)∈E

c(i, j)(1− e∗ij)

≤ 4LPOPT

≤ 4IPOPT,

and so this rounding scheme gives a 4-approximation for the Weighted Vertex Cover with Edge Penalties
problem.

But, we can do better. Let us set the threshold values for rounding each of the variables a bit more
generally. That is, let 1 ≥ α ≥ 0 be some real number chosen later, and we will round the edge variables
e∗ij to 1 if e∗ij ≥ α. If this is the case, then for every constraint where the edge variable eij is rounded, it
follows that either x∗i ≥ α/2 or x∗j ≥ α/2. Therefore, round each vertex variable x∗i to 1 if x∗i ≥ α/2.

How can we bound the values of the rounded variables zij and yi now? Well, by the definition of the
rounding scheme we have

1− zij ≤ (1− α)−1(1− eij)
and

yi ≤
2

α
x∗i .

The value of this rounded solution will be
n∑

i=1

w(i)yi +
∑

(i,j)∈E

c(i, j)(1− zij) ≤ (2/α)
n∑

i=1

w(i)x∗i + (1− α)−1
∑

(i,j)∈E

c(i, j)(1− e∗ij).

This will be optimized when 2/α = (1 − α)−1, and some easy algebra shows that the minimizing value
for α is 2/3. Plugging this in gives us

3
n∑

i=1

w(i)x∗i + 3
∑

(i,j)∈E

c(i, j)(1− e∗ij) ≤ 3LPOPT ≤ 3IPOPT

and so performing the above rounding scheme with α = 2/3 gives a 1/3-approximation algorithm.

2 Lecture 28 — Limits of Efficient Approximation
In this lecture we will examine the limits of approximability. That is, we study the question: how well can
we hope to approximate problems in polynomial time? Recall the Knapsack problem:

Problem 6. Knapsack (Optimization)
Input: A list of n items, represented by positive integer pairs (wi, pi) for i = 1, . . . , n. A positive integer B.
Problem: A subset of items S ⊆ {1, 2, . . . , n} such that

∑
i∈S wi ≤ B and

∑
i∈S pi is maximized

6

.
We show that the Knapsack problem can be approximated as well as is possible, assuming that P 6= NP.
In particular, we give an algorithm for the Knapsack problem which, for every 0 ≤ ε ≤ 1, runs in O(n3/ε)
time and is a (1− ε)-approximation algorithm. Notice that this is not a polynomial time algorithm: if we
wanted to solve the Knapsack problem exactly, we would have to let ε tend to 0, and this would cause
the running time to become extraordinarily large. However, for any fixed ε, this is a polynomial time
algorithm.

This algorithm will use the following exponential time dynamic programming algorithm for Knapsack
as a subroutine. Define the following semantic array:

D[i, j] := the minimum weight necessary to choose items with total value j out of the first i items.

Here is a recursive definition for this semantic array:

D[i, j] := min {D[i− 1, j], D[i− 1, j − pi] + wi}
D[0, 0] := 0

We restrict i between 0 and n and j between 0 and V =
∑n

i=1 pi. Once we compute the array (which can
be done in O(nV) time) we finish by searching for the largest j such that D[n, j] ≤ B. Note also that it
is easy to compute which items actually appear in the optimal knapsack. For the rest of this section we
will denote by A the dynamic programming algorithm which uses the above recurrence and returns a list
of items O appearing in the optimal solution.

What can we do with this dynamic programming algorithm A? Well, notice that the poor running time
of the algorithm is entirely due to the size of the input profits! We can alleviate this problem by scaling
down the profits: in the process we will lose some precision in the final solution, but it turns out that the
precision we lose will not be too large.

The scaling step is quite easy to implement. Let p∗ be the largest profit in the input list, and let
0 ≤ ε ≤ 1 be some real number. We set c = εp∗/n, and then for each i we set

p′i =
⌊pi
c

⌋
.

Summing up these new scaled profits:

V ′ =
n∑

i=1

⌊pi
c

⌋
≤ n2

ε
,

since pi/p∗ ≤ 1 for all i = 1, 2, . . . , n.
The running time of the algorithm A on this scaled instance will be O(nV ′) = O(n3/ε). After running

the algorithm, we get a set of inputs S, and we then return
∑

i∈S pi. Next we prove the following lemma1

which bounds the precision lost in the rounding step.

Lemma 2.1. For any 0 ≤ ε ≤ 1, the above algorithm is a (1 − ε)-approximation algorithm for the
Knapsack problem.

Proof. Let O be the indices appearing in the optimal solution to an instance of the Knapsack problem,
and let S be the indices output by the algorithm. Let ALG be the value of the solution produced by the

1The lemma is only for your own interest. I will not be expecting you to prove something like this.

7

algorithm, and OPT the value of the optimal solution. We can lower bound the value of S by the “scaled”
version of the optimal solution:

ALG =
∑
i∈S

pi ≥
∑
i∈S

c
⌊pi
c

⌋
≥
∑
i∈O

c
⌊pi
c

⌋
.

The first inequality follows due to the floor, and the second inequality follows since S is the optimal
solution in the scaled instance (instead of O). Next we show that “flooring” the optimal solution and then
multiplying in c only leads to a bounded amount of error:∑

i∈O

pi − c
⌊pi
c

⌋
≤
∑
i∈O

pi − c
(pi
c
− 1
)
≤
∑
i∈O

c ≤ nc = εp∗.

Substituting this into our first inequality we get

∑
i∈S

pi ≥
∑
i∈O

c
⌊pi
c

⌋
≥

(∑
i∈O

pi

)
− εp∗ ≥ OPT − εOPT = (1− ε)OPT,

or, more succinctly,
ALG ≥ (1− ε)OPT.

2.1 TSP and Inapproximability
In this section we introduce a problem which we have not studied, but most of you are likely familiar
with: the Travelling Salesperson Problem (TSP). First, a definition: If G = (V,E) is a graph, then a
Hamiltonian cycle of G is a cycle in G which starts at an arbitrary vertex v, uses every vertex in G exactly
once, and then returns to v. Also recall that a graph G = (V,E) is complete if every single possible edge
is present in the graph: so, for every pair of vertices u, v the edge (u, v) ∈ E.

Problem 7. Travelling Salesperson Problem
Input: A complete graph G = (V,E) positive edge weights w : E → R+

Problem: A hamiltonian cycle C on G such that ∑
e∈C

w(e)

is minimized.

If the graph is unweighted, then the same problem is usually just called the Hamiltonian cycle problem:

Problem 8. Hamiltonian Cycle
Input: A graph G = (V,E)
Problem: 1 iff G has a Hamiltonian cycle.

It turns out that the Hamiltonian Cycle problem is NP-Complete, which we state without proof (there
is a really nice reduction from 3-SAT, which I recommend you take a look at!)

Theorem 2.2. The Hamiltonian Cycle problem is NP-Complete.

Of course, this implies that the TSP is NP-Hard (but not NP-Complete, since it is an optimization
problem). In this section we will show that the TSP does not have a polynomial-time c-approximation
algorithm for any constant 0 < c ≤ 1 unless P = NP.

8

To prove this, assume that A is a polynomial-time c-approximation algorithm for the TSP. This means
that for every input graph G and edge weight function w, the algorithm A will output a TSP tour with
value at most OPT/c. We will show how to use A to solve the Hamiltonian Cycle problem.

Suppose that G = (V,E) was a graph (an input to the Hamiltonian Cycle problem). Create the graph
G′ = (V,E ′), where E ′ contains all

(|V |
2

)
edges. We define a weight function w : E ′ → R+ by

w(e) =

{
1 if e ∈ E
n/c+ 1 if e 6∈ E.

Now run the algorithm A on G′ and w. If G has a Hamiltonian cycle, then the optimal solution to this
TSP instance will be n. So, if the algorithm A outputs a cycle with value at most n/c, there must be a
Hamiltonian cycle in the graph. On the other hand, if G does not contain a Hamiltonian cycle, then any
Hamiltonian cycle produced by A must use at least one of the edges with weight n/c + 1. Thus, in this
case the value of the cycle output by A will be at least n/c + 1. This is a polynomial time algorithm for
the Hamiltonian cycle problem!

9

