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A DECISION METHOD FOR ELEMENTARY
ALGEBRA AND GEOMETRY

INTRODUCTION

By a decision method for a class K of sentences (or other expressions) is meant
a method by means of which, given any sentence &, one can always decide in a finite
number of steps whether & is in K; by a decision problem for a class K we mean the
problem of finding a decision method for K. A decision method must be like a recipe,
which tells one what to do at each step so that no intelligence is required to follow
it; and the method can be applied by anyone so long as he is able to read and follow
directions.

The importance of the decision problem for the whole of mathematics (and for
various special mathematical theories) was stressed by Hilbert, who considered this
as the main task of a new field of mathematical research for which he suggested the
term "metamathematics'. The most important kind of decision problems 1s that in which
K is defined to be the class of true sentences of a certain theory. When we say that
there is a decision method for a certain theory, we mean that there is a decision
method for the class of true sentences of the theory(‘k
brackets refer to Notes, pp. 47{f.)

(All superscripts in round

Some decision methods have been known for a very long time. For example, Euclid’s
algorithm provides (among other things) a decision method for the class of all true
sentences of the form "p and g are relatively prime,”" where p and g are integers
(or polynomials with constant coefficients). And Sturm's theorem enables one to
decide how many roots a given polynomial has and thus to decide on the truth of
sentences of the form, "the polynomial p has exactly k roots."

Other decision methods are of more recent date. Lowenheim (1915) gave a decision
method for the class of correct formulas of the lower predicate calculus involving
only one variable. Post (1921) gave an exact proof of the validity of the familiar
decision method (the so-called "truth-table method") for ordinary sentential calculus.
Langford (1927) gave a decision method for an elementary theory of linear order.
Presburger (1930) gave a decision method for the part of the arithmetic of integers
which involves only the operation of addition. Tarski (1940) found a decision method
for the elementary theory of Boolean algebra. McKinsey (1943) gave a decision method
for the class of true universal sentences of elementary lattice theory. Mrs. Szmielew
has recently found a decision method for the elementary theory of Abelian groups‘® .
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There are also some important negative results in this connection. From the
fundamental results of Godel (1930) and subsequent improvements of them obtained by
Church (1936) and Rosser (1936), it follows that there does not exist a decision
method for any theory to which belong all the sentences of elementary number theory
(i.e., the arithmetic of integers with addition and multiplication) — and hence no
decision method for the whole of mathematics is possible. A similar result has been
obtained recently by Mrs. Robinson for theories to which belong all the sentences of
the arithmetic of rationals. It is also known that there do not exist decision methods
for various parts of modern algebra — in fact, for the elementary theory of rings
(Mostowski and Tarski), the elementary theories of groups and lattices (Tarski), and
the elementary theory of fields (Mrs. Robinson)(®).

In this monograph we present a method (found in 1930 but previously unpub-
lished) (4> for deciding on the truth of sentences of the elementary algebra of real
numbers — and hence also of elementary geometry.

By elementary algebra we understand that part of the general theory of real
numbers in which one uses exclusively variables representing real numbers, constants
denoting individual numbers, like "0" and "1", symbols denoting elementary operations
on and elementary relations between real numbers, like "%, " " Ut o USY and
"="  and expressions of elementary logic such as "and", "or", "not", "for some x", and
"for all x". Among formulas of elementary algebra we find algebraic equations and
inequalities; and by combining equations and inequalities by means of the logical
expressions listed above, we obtain arbitrary sentences of elementary algebra. Thus,
for example, the following are sentences of elementary algebra:

0>(1+1)+(1+1);
For every a, b, ¢, and d, where a ¥ 0, there exists an x such that
ax® + bx? + cx+d =0 .

The first sentence is false, and the second is true.

On the other hand, in elementary algebra we do not use variables standing for
arbitrary sets or sequences of real numbers, for arbitrary functions of real numbers,
and the like. (When in this monograph we attach the qualifier "elementary" to the
name of a theory, we refer to this abstention from the use of set-theoretical notions.)
Hence those algebraic concepts whose definitions in terms of the fundamental notions
listed above would require. some set-theoretical devices cannot be represented in our
system of elementary algebra. This applies, for instance, to the general notion of a
polynomial, to the notion of solvability of an equation by means of radicals, and the
like. For this reason it is not possible, for example, to consider as a sentence of
elementary algebra the sentence:

Every polynomial has at least one root.
On the other hand, one can formulate in elementary algebra the sentences:

Every polynomial of degree 1 has a root;
Every polynomial of degree 2 has a root;

Every polynomial of degree 3 has a root;



and so on. Since we are dealing with real — not complex — algebra, the above
sentences are true for odd degree but false for even degree.

It should be emphasized that the general notion of an integer (as well as that of
a rational, or of an algebraic number) also belongs to those notions which cannot be
represented in our system of elementary algebra — and this in spite of the fact that
each individual integer can easily be represented (e.g., 2 as 1 +1, 3 as 1 +1 +
1, etc.) (%), The variables in elementary algebra always stand for arbitrary real
numbers and cannot be supposed to assume only integers as values. For such a suppo-
sition would imply that the class of all sentences of elementary algebra contains all
sentences of elementary number theory; and, by results mentioned above, there could
be no universal method for deciding on the truth of sentences of such a class. Thus,
the following is not a sentence of elementary algebra:

The equation

has no solution in positive integral x, y, z.

This gives, we hope, an adequate idea of what is understood here by a sentence
of elementary algebra. Turning now to geometry, we can say roughly that by a sentence
of elementary geometry we understand one which can be translated into a sentence of
elementary algebra by fixing a coordinate system. It is well known that most sentences
of elementary geometry in the traditional meaning are of this kind. There are, however,
exceptions. These are, for instance, statements which involve explicitly or implicitly
the general notion of a natural number: for instance, statements regarding polygons
with an arbitrary number of sides — such as, that in every polygon each side 1is
shorter than the sum of the remaining sides. It goes without saying that statements
which involve the general notion of a point set — of an arbitrary geometrical figure
— are also not elementary in our sense, but they would hardly be regarded as ele-
mentary in the everyday understanding of the term.

On the other hand, there are sentences which are elementary according to our
definition but which are not ordinarily so considered. Most sentences of analytic
geometry concerning algebraic curves of any definite degree belong here: for example,
the theorem that any two ellipses intersect in at most four points.

It is important to realize that only the nature of the concepts involved, and rnot
the character of the means of proof, determines whether a geometrical theorem is a
sentence of elementary geometry. For instance, the statement that every angle can be
divided into three congruent angles is an elementary sentence in our sense, and of
course a true elementary sentence — despite the fact that the usual proofs of this
statement make essential use of the axiom of continuity. On the other hand, the general
notion of constructibility by rule and compass cannot be defined in elementary
geometry, and therefore the statement that an angle in general cannot be trisected by
by rule and compass is not an elementary sentence — although we can express in
elementary gecmetry the facts that, say, an angle of 30° cannot be trisected by
1, 2,..., or in general any fixed number n of applications of rule and compass.

If we now compare the theories treated in this monograph (i.e., elementary
algebra and geometry) with the other theories mentioned above for which decision
methods have been found, we see at once that although the logical structure in both
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cases is indeed equally elementary, the theories investigated here have a considerably
richer mathematical content. It would be possible to mention numerous problems which
can be formulated in these theories, and which played in the past an important role
in the development of mathematics. In the solution of these problems, and in general
in the development of the theories considered, a great variety of modes of inference
have been applied — some of them of a rather intricate nature (to mention only one
example: the proof of the theorem that a triangle is isosceles if the bisectors of
two of its angles are congruent). Thus the fact that there exists a universal decision
method for elementary algebra and geometry could hardly have been regarded as a
foregone conclusion.

In the light of these remarks one should not expect that the mathematical basis
for the decision method to be discussed will be of a quite obvious and trivial
nature. In fact by analyzing this decision method the reader will easily see that in
its mathematical content it is very closely related to a classical algebraic result
— namely, the theorem of Sturm previously mentioned — and it even provides an ex-
tension of this theorem to arbitrary systems of equations and inequalities in many
unknowns.

Since a decision method, by i1ts very nature, requires no intelligence for its
application, it is clear that, whenever one can give a decision method for a class
K of sentences, one can also devise a machine to decide whether an arbitrary sentence
belongs to K. It often happens in mathematical research, both pure and applied, that
problems arise as to the truth of complicated sentences of elementary algebra or
geometry. The decision method presented in this work gives the mathematician the
assurance that he will be able to solve every such problem by working at it long
enough. Once the machine is devised, his task will reduce to explaining the problem
to the machine — or to its operator. It may be instructive to 1llustrate, by means
of an example, the more specific ways in which a decision machine could prove helpful
in the study of unsolved problems.

As is well known, any two polygons ot equal area, P and (), can be decomposed
into the same finite number n of non-overlapping triangles in such a way that each
triangle in P is congruent to the corresponding triangle in (. We are interested 1n
determining the smallest number for which such a decomposition is possible. We assume
in the following that P is the unit square and ¢ is a rectangle of unit area whose
base has x units. Now the smallest number n depends exclusively on x and 1s denoted
by d(x); our problem reduces to describing the behavior of the function d for all
positive values of x.

In particular, given any x,, we can ask what the value of d(x. ) is. In most
cases, even the answer.to this simple question presents difficulty; e.g., 1t 1s not
easily seen whether or not d(7/2) = 8. However, we can easily establish, Ly means
of a direct geometrical argument, an upper bound for d(xo); in fact, if 1 < x, < n,
where n is an inteper, we have d{x_ ) <2n. Consequently, just one oif the sentences
"d(x,) =17 "d(xo) = 2% ..., "d(xy) = 2n" is true. If, moreover, x, is an algebraic
number, all these sentences prove to be expressible in elementary geometry. Hence,
by setting the machine in motion at most 2n times, we could check which of the sen-
tences is true and thus find the value of d(xo).

In turn we may consider hypotheses regarding the behavior of the tunction d in
some intervals. For instance, offhand, it seems plausible that 5 < d(x) < 6 whenever
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2 < x £ 3. This hypothesis is still expressible in elementary geometry, and hence
could be confirmed or rejected by means of a machine. The situation changes when
we consider hypotheses of a more general character concerning the behavior of the
function in its whole domain, e.g., the following one: for any real x and integral n,
if x > n, then d(x) > 2n. This hypothesis has not yet been confirmed even for small
values of n. In its general form, the hypothesis cannot be formulated in elementary
geometry, and hence cannot be tested by means of the machine suggested here. However,
the machine would permit us to test the hypothesis for any special value of n. We
could carry out such tests for a sequence of consecutive values, n = 2, 3, ..., up
to, say, n = 100. If the result of at least one test were negative, the hypothesis
would prove to be false; otherwise, our confidence in the hypothesis would increase,
and we should feel encouraged to attempt establishing the hypothesis (by means of a
normal mathematical proof), instead of trying to construct a counterexample.

As is seen from the last remarks, the machine envisaged may prove useful in
connection with certain problems which cannot be formulated in elementary algebra
(or geometry). The most typical in this class of problems are those of the form
"Is it the case that, for every integer n, the condition C, holds?" where C, is
expressible in elementary algebra for each fixed value of n. The machine could be
used to solve mechanically this sort of problem for a series of consecutive values
of n; in consequence, either we would learn that the solution of the problem in 1its
general form is negative or else the plausibility of a positive solution would in-
crease. Many important and difficult problems belong to this class, and the applica-
bility of the machine to such problems may greatly enhance its value for mathematical
research. (The results of this work have further implications, independent of the
use of the machine, for the class of problems discussed; see Supplementary Note 7.)

it will be seen later, from the detailed description of the decision method, that
the machine could serve some further purposes. We are often concerned, not with a
sentence of elementary algebra, but with a condition involving parameters a, b, c,...,
and formulated in terms of elementary algebra; the condition may be very involved, and
we are interested in simplifying it — and, in fact, in reducing it to a standard
form, in which it appears as a combination of algebraic equations and inequalities
ina, b, c,... . To give an example, consider the condition satisfied by the numbers
a, b, and ¢ if and only if there are exactly two (real) solutions of the equation:

ex? + bx + ¢ = 0,
In this case, the reduction is very simple and is well known from high-school algebra;
the condition can be given the standard form:

a ¥ 0 and b2 - 4ac > 0

The decision method developed below will give the assurance that such a reduction is
always possible; and the decision machine would perform the reduction mechanically.

This monograph is divided into three sections. The first section contains a
description of the system of algebra to which the decision method applies. In Section
2, the decision method itself is developed in a detailed way. In Section 3, some ex-
tensions of the resultsobtained aswell as some related open problems are discussed. The
notes at the end of the monograph contain, inaddition to historical and bibliographical
references, the discussion of various points of theoretical interest which are not
directly related to the question of constructing a decision machine. A short bibliography
following the notes lists the works which are referred to in the monograph(s).



SECTION 1.

THE SYSTEM OF ELEMENTARY ALGEBRA

In this section we want to describe a formal system of elementary algebra — and
in particular to define in a precise way the class of sentences of this system!").

By a variable we shall mean any one of the following symbols:
Xy Xy Xyyeani Yo Yy Ygaeeei Iy 2, 2y,

We suppose that there are infinitely many variables and that they are arranged in a
sequence, so that we can speak of the variable occupying the lst, 2nd,..., nth place
in the sequence. These variables are to be thought of intuitively as ranging over the
set of real numbers. .

By an algebraic constant we shall mean one of the following three symbols:
1, 0, -1 .
By an algebraic operation-sign we shall mean one of the following two symbols:

+, .

The first is called the addition sign, and the second the multiplication sign.

By an algebraic term we understand any meaningful expression built up from
variables and algebraic constants by means of the elementary operation-signs. Thus,
for example,

x, x, +y, “1'x, [(xl . -1)*:1] + x,
are algebraic terms. But

2+, V2 +x

are not algebraic terms: the first, because it is meaningless; the second, because
it involves the sign " V2 ", which is neither a variable nor an algebraic constant
- (in the restricted meaning we have given to the latter term).

If one wants a precise definition of algebraic terms, they can be defined re-
cursively as follows: An algebraic term of first order is simply a variable or one
of the three algebraic constants. If a and 3 are algebraic terms of order at most
k, and if the maximum of the orders of a and 8 is k, then (a°*f) and (a + 8) are
algebraic terms of order k + 1. An expression is called an algebraic term if, for
some k, it is an algebraic term of order k.

According to the above definition, one should inclose in parentheses the results
of performing operations on terms. Thus one should write, for example, always

(x + y) and (x-y)



instead of simply
x +yand x°y.

We shall often omit these parentheses, however, when no ambiguity will result from
doing so; we shall use, in general, the ordinary conventions as to omitting parentheses
in writing algebraic terms. Thus, we write

x tyz

instead of
[x + (y-2)] .

It is convenient to introduce the operation of subtraction as follows(®): jif
a and 5 are any terms, then we set

(@=pB) =lat (-1-A] .

We have used here the symbol "=" to indicate that two formulas are identically
the same — in the present case by definition. We shall use this symbol throughout
the rest of this report. When we write

a=f

we mean that a and 3 are composed of exactly the same symbols, written in exactly the
same order. Thus, for example, it is true that

0

1]
<

and that
(0=1)=( =1) ,

but not that
(0 +

(=
~—
[l
(=]

nor that

(0=1)=(1=0)

It is also convenient to introduce notation for sums and products of arbitrary

finite length. Let a , a_,... be a sequence of terms. Then we set

and similarly,

EK
K
i
(’—‘\
:j,—
By
8
o
N



Instead of
R

a.
12
1

3

we shall also sometimes use the notation

or simply,

and instead of

a; ,
i=1
we shall sometimes write
a *a° a
1 2 n
or
a * ‘a
1 n

If a,..., @, are all the same, and equal, say, to a, then instead of

n
Tra,;

1=1

we sometimes write simply
aﬂ
Thus, for example, .
£s

has the same meaning as

[(£-¢)-£]

Moreover, we shall sometimes write a® for 1.

By an algebraic relation-symbol we shall mean one of the two symbols:

called, respectively, the equality sign and the greater-than sign(®),

By an atomic formula we shall mean an expression of one of the forms

(a = B), (a > f)



where a and 8 stand for arbitrary algebraic terms; according to our previous remarks,
parentheses will sometimes be omitted. The first kind of expression is called an
equality, and the second an inequality. Thus, for example, the following are atomic
formulas:

1=1+1
0 +x = x
x°{y +z) =0

[x+(1 + 1)] + (y*y) >0
x> (y'y} +x .

By a sentential connective we shall mean one of the following three symbols:

~, AN, V.

The first is called the negation sign (and is to be read "not"), the second is called
the conjunction sign (and is to be read "and"), and the third is called the dis-
junction sign (and is to be read "or" — in the nonexclusive sense).

By the (existential) quantifier we understand the symbol "E", If £ is any vari-
able, then (E£) is called a quantifier expression. The expression (E£) is to be
read "there exists a £ such that ."

By a formula we shall mean an expression built up from atomic formulas by use of
sentential connectives and quantifiers. Thus, for example, the following are formulas:

0~=20

(Ex)(x = 0) ,

(x = 0)V(Ey)(x > y) ,

(Ex)~ (Ey)~ [(x = y) V(x> 1+ ],

~(x > 1)A(Ey)(x = y*y)

If one wants a precise definition of formulas, they can be defined recursively
as follows: A formula of first order is simply an atomic formula. If # is a formula
of order k, then ~ & is a formula of order k + 1. If & is a formula of order k and
£ is any variable, then (E£) 6 is a formula of order k + 1. If 6 and ¢ are formulas
of order at most k, and one of them is of order k, then (6§ A @) and (8V @) are
formulas of order k + 1. An expression is a formula, if, for some n, it is a formula
of order n.

Among the variables occuring in a formula, it is for some purposes convenient
to distinguish the so-called "free" variables. We define this notion recursively
in the following way: If @ is an atomic formula, then £ is free in @ if and only if
£ occurs in ¢; £ is free in (Em) 6 if and only if 7 is not the same variable as
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£, and € is free in 6; £ is free in ~ # if and only if £ is free in 6; £ is free
in (6 ANg), and in (6 V @), if and only if £ is free in at least one of the two
formulas # and @. Thus, for example, x is free in the formulas

x -1
x = x
(Ey)(y = x)

(x = 1)V(Ex)(x = 2)
but not in the formulas
y =1
(Ex)(x = x)

(Ex)(Ey)(y = x)

(For certain purposes a more subtle notion is needed: that of a variable’s being
free, or not free, at a certain occurrence in a formula. Thus, for instance, in the
formula

(Ey)ly = x)A (Ex)[x + y = x*w] ,

the variable x is free at its first occurrence — reading from left to right — but
not in its other occurrences. This notion is not necessary for our discussion, how-
ever, so we shall not give a more exact explanation of it.)

It is convenient to introduce some abbreviated notation‘®). If # and & are any
formulas, then we regard

(6 — @)
as an abbreviation for

(~8 Ve,
and

(6 =—¢)

as an abbreviation for

The sign —= is called the implication sign, and the sign =—1is called the
equivalence sign. I1f # and $ are any formulas, then the formula § —¢ 1s called
an implication; we call & the antecedent or hypothesis and & the consequent or

conclusion of this implication.

If 6 is any formula, and £ is any variable, then

(ALY 6

is an abbreviation for
~(EE)~6 .
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We also introduce notation to represent disjunctions and conjunctions of arbi-
trarily many formulas. In the simplest case the formulas in question are arranged in
a finite sequence # , €,,..., 6 ; we then denote the disjunction of the formulas by

gi
1<ign
or
é VCLV“ Vé
and their conjunction by
8
1<i<n

or

91/\82/\.../\8".

A recursive definition of these symbolic expressions hardly needs to be formulated
explicitly here. Sometimes we are confronted with more involved cases: for instance,
we may have a finite set S of ordered couples (n,p), a formula 9n being correlated
with each member (n,p) of S. To denote the disjunction and conjunction of all such
formulas ﬁn,p we use the symbolic expressions

. 8n,p
(n,p) in S

and

4
(n,p) ins
(where "(n,p) in S" may be replaced by formulas defining the set S). To ascribe to
these symbolic expressions an unambiguous meaning we have of course to specify the
order in which the formulas 5;' are taken in forming the disjunction or conjunction.
The way in which this order is specified is immaterial for our purposes; we can, if
we wish, specify once and for all that the formulas are taken in lexicographical
order of their indices; thus, for instance, the symbolic expression

ntp<g M

1<n,p
11



will denote the disjunction

([3[9,,1%,2 va, Jve, fve, ] ve,,

Analogous notations are used for disjunctions and conjunctions of finite systems
of formulas which are correlated, not with couples, but with triples, quadruples,...,
or even arbitrary finite sequences, of integers.

We also need a symbolism to denote arbitrarily long sequences of quantifier
expressions. For this purpose we shall use exclusively the "three-dot” notation:

(Efl). .. (Efn) #
(Aé,). (ag) 6,

where §l,..., ¢, are arbitrary variables, and # is an arbitrary formula.

and

A formula is called a sentence, if it contains no free variables. Thus, for
example, the following are sentences:

0=0

0=1
(0=0)A(1=1)
(Ex)(0 = 0)

(Ex)(x = 0) A (Ey) ~ (y = 0)
(Ex)(Ey)(y > x)

On the other hand, the following are not sentences since they contain free variables:

x>0 ‘
(Ey)(x > 0)
Ex)(x > [(x + D + (y'p)] ).

It should be noticed that while a sentence is either true or false, this is not
the case for a formula with free variables, which in general will be satisfied by
some values of the free variables and not satisfied by others.

The notion of the truth of a sentence will play a fundamental role in our further
discussion. It will occur either explicitly or, more often, implicitly; in fact, in
terms of the notion of truth we shall define that of the equivalence of two formulas,
and the latter notion will be involved in numerous theorems of Section 2, which are
essential for establishing the decision method. We shall use the notion of truth
intuitively, without defining it in a formal way. We hope, however, that the correct-
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ness of the theorems involving the notion of truth will be apparent to anyone who
grasps the mathematical content of our arguments. No one will doubt, for instance, that
a sentence of elementary algebra like

(42) (Ay) [(x + y) = (y + 2)]
is true, and that the sentence
(Ax)(Ay)[(x -y) = (y - x)]

is false(®),

As examples of general laws involving the notion of truth, we give the following:

If 8 is a sentence, then ~ # is true if and only if & is not true. If & and ¢ are
sentences, then (4 A &) is true if and only if # and & are both true. If # and & are
sentences, then (6 V &) is true if and only if at least one of the sentences & and
& is true; & —¢@ is true if and only if either # isnot true, or ¢ is true; and
#=—¢p is true if and only if # and @ are either both true or both false.

Let ¢ and & be any formulas, and let £, &, 10y &, be the totality of free
variables that occur in # or & or both.

Then if the sentence

(4¢,) - - - (4¢,) (B=—=@)

is true, we say that # and ¢ are equivalent.

Thus, for example, the following two formulas are equivalent:

(x>0) V(zx=0), (Ey)(x =y*y)

(Notice that neither of these formulas is equivalent to

(z >0) V(z=0)

since the latter contains "z" instead of "x".)

We now have some simple but very useful theorems regarding this notion of equiva-
lence; they will be used in the subsequent discussion without explicit references.

A. The relation of equivalence is symmetric, reflexive, and transitive.

B. Let &, and ¢, be equivalent formulas, and suppose that the formula J, arises
from the formula gll gy replacing 81 by 92 at one or more places. Then §L1 is equivalent

to ﬁz.

The proof of A and B presents no difficulty; in establishing B we apply induction
with respect to the order of .

13



It is also convenient to define an equivalence relation for terms. Let a and 3 be -
any terms, and let é&, é;,..., §h be the variables which occur in a or 3 or both. Then
if the sentence

(Aél). .. <A§”)(a = B)
is true, we say that a and [ are equivalent.

The fundamental theorems regarding the equivalence of terms are analogous to
those concerning the equivalence of formulas. In fact we have:

C. The relation of equivalence of terms is symmetric, reflexive, and transitive.

D. If a and a_ are equivalent terms, and if the term Ba arises from the term
£, by replacing o, by a, at one or more places, then B, is equivalent to B,

E. If altand a, are equivalent terms, and if the formula J, arises from the
formula g& by replacing a, by a, at one or more places, then J, is equivalent to J,.

14



SECTION 2.

DECISION METHOD FOR ELEMENTARY ALGEBRA

The decision method for elementary algebra which will be explained in this section
can be properly characterized as the "method of eliminating quantifiers"(lo)’(ll).
It falls naturally into two parts. The first, essential, part consists in a procedure
by means of which, given any formula &, one can always find in a mechanical way an
equivalent formula which involves no quantifiers, and no free variables besides those
already occurring in #; in particular, this procedure enables us, given any sentence,
to find an equivalent sentence without quantifiers. Mathematically, this part of the
decision method coincides with the extension of Sturm's theorem mentioned in the
Introduction. The second part consists in a procedure by means of which, given any
sentence # without quantifiers, one can always decide in a mechanical way whether
# is true. It is obvious that these two procedures together provide the desired
decision method.

In order to establish the first half of the decision method, we proceed by
induction on the order of a fornula. As is easily seen (using the elementary properties
of equivalence of formlas mentioned in Section 1) it suffices to describe a procedure
by means of which, given a formula (E£) &, where 6 contains no quantifiers, one can
always find an equivalent formula &, without quantifiers, and such that every variable
in & is free in (E£) 6; i.e., to give a method of eliminating the quantifier from
(E£) 6. Actually, it turns out to be convenient to do slightly more: i.e., to give a
method of eliminating the quantifier from (Eé) §, where the prefix "(fx)" is to be

read "there exist exactly k values of x such that.”
DEFINITION 1. Let @y Qyyeney O be terms which do not involve £. Then the term
Y T Y
a a, £ +.. o

is called a polynomial in £. We say that the degree of this polynomial is n, and
that o ,..., @ are its coefficients: a, is called the leading coefficient.

REMARK. Our definition of the degree of polynomials differs slightly from the one

usually given in algebra, in that we do not require that the leading coefficient be
- different from zero. Thus, we call

1+ (1 +1)x+ (1 -1)=x2
a pclynomial of the second degree, not of the first degree.

DEFINITION 2. Let o and 3 be polynomials in & of degrees m and n respectively: i.e.,
let

a=a ta- £+t a L

il

B=f, 4B E 4.t B b,
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vhere a_,..., a_ and ﬁo,..., R are terms which do not involve £. Let r be the minimum
of the integers m and n, and Yet s be their maximum. Let

1}

% al.+,8ifor1_<_r.

If m <n, let

Y, =B forr <i<ss

If m>n, let

Y, =a;, forr <i<s .
Then we set

ate Bty ft 68

DEFINITION 3. Let

= - ..
a—a.o+a1§+...+a.§

be a polynomial in &. Then by the first reductum (or, simply, the reductum) of a
we mean the polynomial obtained by leaving off the term a £ t.e., we set

m

Rdf(a) agta <& +...t a, €%t

if m= 0 (so that a does not involve £ at all) we set
Rdf(a) =0 .

We define reducta of all orders recursively, by setting

Rd;.'(a) = a
Rd*1(a) = Rd [de(a)]
£ £ £

The following theorem is easily established by an induction on the degree of a.

Treorew 4. If a is a polynomial in £, then Bdf(a) is also a polynomial in & (whose
coefficients, of course, are the same as certain of the coefficients of a — and
hence contain no variables except those occurring in the coefficients of a). If
a is of a degree m > (0, then Rdé(a). is of degree m — 1.

We make use of Theorem 4 in defining recursively the product of two polynomials:

DerFINITION 5. Let

= . .-
a=a t+ta-ft...ta &

B + BtE +...t B &

™
1}
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be polynomials in & of degrees m and n respectively. If m = 0, then we set

a e B = (a',80> + (G‘E,)f +...4 (a-ﬁn>§" .

Ifm>0, let
Y, = 0 fori < m
Yo = a.'ﬁo
7-*'1 = al. 1
yl"’n an"Bn'

and we set

g = [ (@) 8] (%0 %76 Pt £,

DEFINITION 6. If a and B are polynomials in &, then we set
a = B=a+ [(-1)y B].

TueoreM 7. If a and f5 are polynomials in £, then a e B, a ‘¢ £, and a ¢ B are poly-

nomials in &.
ProoF. Obvious from the definitions.
DerINITION 8. If a = &, then we set
Fe(a) = 0 + 1.6 .
If a is a constant (0, 1, or =1), or a variable different from £, then we set
Pf(a) =a .
If a and B are arbitrary terms, then we set
Pf(a + pB) = Pf(a) te Pé(,B)

Pg(a'ﬁ) = Pf(a)'f Pf(ﬁ)

THeoreM 9. If a is any term, and £ is any variable, then Pf(a) is a polynomial in
£, and is equivalent to a.

ProoF. By an induction on the order of o, making use of Theorem 7.
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Remark. It will be seen that if a is any term, then Pf(a) is the polynomial which
results from "multiplying out” and "arranging in increasing powers of £." It is
convenient to extend the definition of P, so that it will be defined not only for
all terms but for all formulas without quantifiers. This is done in our next defi-
nition. The intuitive significance of Pé(ﬁ), when # is a formula, will become clear
in Theorem 11.

DerINITION 10. For all terms a and B, and for all formulas & and &, we set

(i) Pla=p) = Pla=p) =0
(ii) Pola>p) = Pla=p) >0

(iii) P[v(a = B)] =[Bla> B VE(B > a)]
(iv) B> m] = [Pta = B VBB > 0]
v) P8V = [P(8) VP ()]
(vi) ' P,(8NG) = [pg(a) /\Pé(;é)]

(vii) P~ (8VP)] = B~ O AR(~ )

(viii) P~ (6AD)] = B~ 6) VE(~ )

(i) P (~~6) = B(6) .

THEOREM 11. Let € be any formula without quantifiers, and let £ be any vartiable. Then
P.(8) is equivalent to 8. Moreover, Pf(ﬁ) isa formula built up by means of conjunction
and disjunction signs (but without using negation signs) from atomic formulas of the
form

and

where a is a polynomial in £.

ProoF. We prove that P.(#) is equivalent to # by an induction on the order of é. 1If
8 is of first order, tﬁe theorem is obvious by 10 (1), 10 (ii), 9, and the following
facts: a = £ is equivalent to a — 8= 0; and a > S is equivalent to a = £>0. In
order to carry out the recursive step, we make use of the facts: that ~ (a = ) 1s
equivalent to (a > B) V (B> a); that ~ (a > B) is equivalent to(a = B) V (8> a);
that ~ (# V &) is equivalent to~ 6 A~ &; that ~ (§ A &) is equivalent to™~ 6V~ &;
and that ~~ @ is equivalent to 8.

The second part of the theorem can also be proved by an induction on the order
of #, making use of Theorem 9.
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Given any formula & without quantifiers, we have thus obtained an equivalent
formula Y = Pf(f?) which contains no quantifiers and no negation signs. We are now
going to define an operator @ which subjects any formula ¢ of this kind to further
transformations by applying mainly the distributive law of sentential calculus, so
as to bring J to the so-called "disjunctive normal form."

DEFINITION 12. If & is an atomic formula, then we set
AP =& .
If

and

Q&) = %,

m<i<mtn j<m

vhere j (for i < m + nand j < m;) is an atomic formula, then we set

Q(@,V@) = g:’i,j

i<mtn j<m

and

A8AE) = Vo (M M AN ALY
n<;E:+n

Tueorem 13. If & is any formula which involves no negation signs or quantifiers, then
Q(P) is a disjunction of conjunctions of atomic formulas. Moreover, Q($) is equivalent

to @

ProoF. By induction on the order of @, making use of the following fact: for any
formulas &, &, and J, the formnulas $A (6 V ¢) and (G A 8) V (A J) are equivalent, as
are also the formulas $ A (6 A ) and (AN 6) A J, as well as the formulas $V (8 V {)
and (PV 6) V .
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Theorew 14. Let ¢ be any formula without quantifiers, and let £ be any variable. Then
QPg(f) ts a disjunction of conjunctions of atomic formulas — each of the atomic ‘
formulas in question having a polynomial in £ for its left member and 0 for its right
member. Moreover, G’é(é) is equivalent to &.

ProoF. By Theorems 11 and 13; QPf(@ is of course used here to mean Q[Pg(@]

We now introduce the notion of a derivative (with respect to a given variable).

DerInNITION 15. If

= - Pt 1]
a=a ta-f+t...+taé

is a polynomial in £, of degree n > 0, then we put (writing "2" for "1 + 1", etc.)
Df(a) =a, t (2:a,) ¢ t...t (n'an)§"" .

If a is of degree zero in £, we set

Df(a.) =0 .

REMARK. The notion of a derivative can of course be extended to arbitrary terms which
are not formally polynomials in £ according to Definition 1 by putting

D(a) = D Py (a)

THEOREM 16. If a is a polynomial in &, so is Df(a).
Proor. By Definitions 1 and 15.

We also define derivatives of arbitrary order as follows:

DEFINITION 17. If o is any term, and £ is any variable, we set

Dg(a) = q
Dg!'*l(a) = Df[Dg(a)]

Tueorew 18. If a is a polynomial in £, and k is a non-negative integer, then Dg(a) is
a polynomial in a.

Proof. By Theorem 16 and Definition 17.

The operator M which will be introduced next correlates, with every polynomial
a, every variable £, and every non-negative integer n, a formula M2 (a), which in
intuitive interpretation means that £ is a root of a of order n. In case n = 0, this
formula means simply that £ is not a root of a. In this connection the formula MX(a)
will be read "the number £ is of order n in the polynomial a," independent of whether
n is positive or equal to zero.

29



DEFINITION 19. Let a be any polynomial in £. If n is any positive integer, we set

W (a) = i@ = o] M@ =

We set, in addition,

Mg(a) = ~(a = 0)

We now introduce by definition a new kind of existential quantifier, which may
be called the numerical existential quantifier. If n is any non-negative integer, &
any variable, and ¢ any formula, then (E£)d is to be interpreted intuitively as

n
meaning that there exist exactly n values of & which make @ true.

DEFINITION 20. Let & be any variable, and let ¢ be any formula. We set
(E£)g = (A6~ .
o

Let n be any positive integer, and let 7 ,..., 7), be the first n variables (in the
sequence of all variables) which do not occur in ¢ and are different from £. Then
we set

(E¢)d = En)...(E ~m = M) A
, CARNCON NN S ()

(4¢) |$=— (=9

We next introduce an operator F with a more complicated and technical interpretation.
1f n is an integer, £ a variable, and a and 8 any polynomials, then Fz(a,ﬁ) is a
formula to be intuitively interpreted as meaning that there are exactly n numbers
£ which satisfy the following conditions: (1) £ is a root of higher order of a than of
B, and the difference between these two orders is an odd integer; (2) there exists
an open interval, whose right end-point is £, within which a and B have the same
sign. The exact form of the symbolic expression used to define Fz(a,B) will probably
seem strange at first glance even to those who are acquainted with logical symbolism;
we have chosen this form so as to avoid the necessity of introducing a notation to
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indicate the result of replacing one variable by another inagiven term. (An analogous
remark applies to some other symbolic formulations given elsewhere in this work — in
particular, in Note 9.) It will be noticed that the variable £ is not free in Fé‘(a,,@).

DEFINITION 21. Let a be a polynomial of degree p in £, end let 3 be a polynomial of

degree q in £. Let M, end 7, be the first two variables which are different from ¢
and which do not occur in a. or B. Then we set

FP(a, B) = (E&) MR ) AME(B) | A
¢ o 0<k<q [§ ¢ ]
0<2m<p-k-1

En)(En) |(m = &)A€ > m,) /\(Arf){[(é > m) An, > f)]—» (o8> o)}

The operator G which will now be defined is closely related to the operator
F. In fact, a and £ being polynomlals in &, G"(a B) has the following meanmg if

n_ is the 1nteger for which Fgl(a,ﬂ) holds and n, is the integer for which F 2(a,B')

holds (where 2’ is the negative of 8 — i.e., the polynomial obtained by multlplymg
£ by -1), then n = n, -~ n,; the integer n may be positive, zero, or negative. Re-
membering the intuitive meaning of F"(a,,@), the intuitive meaning of G"(a B) now

becomes clear.

DeriNITION 22. Let n be any integer (positive, negative, or zero), and let a and (3 be
any polynomials in &. Let k be the maximum of the degrees of a and 3. Then we set

C2(a,B) = [ FE*™(a, /) AFE(a, (-1) )|

We need also the notion of the remainder obtained by dividing one polynomial by
another. For our purposes, however, it turns out to be slightly more convenient to
introduce a notation for the negative of the remainder.

DEFINITION 23. Let £ be a variable. Let a be a polynomial of degree m in &, whose
leading coefficient is a,. Let 5 be a polynomial of degree n in &, whose leading
coefficient is 5. If m <" n, we set

Rf(a,ﬁ) = (~1) " g
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If m = n, we set
Ri(a,B) = RdPy(a, B 8 - 5;;-a)

If m>n, we set

R (a,p) = B { RdngQi:-a - d.'ﬁ,;f""'ﬁ). ,5} .

Theorew 24. If a and BB are two polynomials in a variable £, then R £(a, B) is again
a polynomial in £ vhose coefficients contain no variables except those occurring in
the coefficients of a and 5. If B is a polynomial of degree n > 0, then R (a. B) is
of degree less than n. If B is of degree zero, then Rf(a,ﬁ) 0.

1

It should be noticed that our definition of the negative of the remainder
diverges somewhat from that which would normally be given in a textbook of algebra.
According to the usual definition of the remainder, the negative of the remainder
obtained by dividing a polynomial a of degree m by a polynomial 3 of degree n — both
in the variable £ — is a polynomial 8 of a degree lower than n, such that, for some
polynomial 7y, the equation

a=pBy-38

is satisfied identically. The coefficients of ¥ and & can be obtained from those of
a and 8 by means of the four rational operations, division included. We have modified
this definition so as to eliminate division, which, as we know, is not available in
our system. In consequence, we cannot construct for the negative remainder in our
sense a polynomial 7y which satisfies the above equation. We have instead:

THEOREM 25. Let a and B be any polynomials in a variable &, of degrees m and n, re-
spectively, and let 5, be the leading coefficient of S. We set q = 0 in casem < n,
and g =m —n+ 1 in case m > n. Then there is a polynomial ¥y in &, whose coefficients
contain no variables except those occurring in the coefficients of a and 55, and for
which a*29 and By - Rf(a,ﬁ) are equivalent.

Proor. By induction on the difference of the degrees of a and f.

One rather undesirable consequence of our modification of the notion of a negative
remainder is that, in case the leading coefficient ﬁ" of £1is 0, all the coefficients
of R (a,ﬁ) prove to be terms equivalent to 0. No difficulty will arise from this
fact however, s1nce we shall never use R (a,B) except when conjoined with the
hypothesis ~ (ﬁ

It should be pointed out that our negative remainder Rg(a,,@) isstill a polynomial
of lower degree than 8 — except when 5 is of degree zero, in which case R.(a,8) = 0
This circumstance, together with the analogous property of the reductum of a polynomial
(see Theorem 4) will be the basis for some recursive definitions given in our later
discussion.

The following three definitions (26, 28, and 30) and the theorems which follow
them (27, 29, and 31) are of crucial importance for the decision method under dis-
cussion. In these definitions we introduce three operators S, T, and U which correlate,
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with certain formulas &$, new formlas S(F), T($), and U($) containing no quantifiers;
and in the subsequent theorems we show that the correlated formulas are always
equivalent to the original ones. The operator S is defined only for rather special
formulas — in fact, for those of the form Gg(a,,@). The operator T, which is con-
structed with the help of S, isdefined for a rather extensive class of formulas, which
contains formulas like

(fg’)(a = 0), (fé)[(a = 0)A(B>0)]

{where a and 83 are any polynomials in £), and some related but more complicated types
of formulas. The operator U, finally, constructed in terms of T, is defined for all
possible formulas; hence Theorem 31, which establishes the equivalence of @ and U(¢),
provides us with a universal method of eliminating quantifiers. It may be pointed
out that the operator U, though constructed with the help of T, and thus indirectly
of S, is not an extension of either of these operators; thus, if ¢ is a formula for
which S is defined, then S($) and U(P) are in general formally different, though
equivalent, formulas.

DEFINITION 26. Let k be an integer, and let a and B be polynomials in a variable £
of degrees m and n respectively and having leading coefficients a, and f; and let

¢ = Gi(a,B)
(i) If a or B is the polynomial 0, we set

S(@) = (0 = 0), for k = 0
and
S(g) = (0 = 1), for k& :}t 0

(i1) If neither a nor B is the polynomial 0, and if m + n is eveﬁ, we set

St E{[(“. 0) ASG§<Rdf(a)'5>] v
[(ﬁ,, 0) /\SG:,(a,Bdf(,BO} V[~(a,-ﬁn = 0) Ascg(,s,35<a,/3>)] } :
(iii) If neither a nor B is the polynomial 0, and m + n is odd, we set
S(&) E{[(an = 0) nsc(rdg(a), £)] v [(8, = 0) Ak (e, Rd,(A)] V
(o087 o) Ay (o, )] V [0 > aurf,) Asct (.Re(e, )] }

TrEOREM 27. Let & be one of the formulas for which the operator S is defined (by 26).
Then S(#) is a formula which contains no quantifiers, and no variables except those
that occur free in &. Moreover, & is equivalent to S(@).
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Proor. The first part follows immediately from Definition 26.

To show the second partwe consider the recursive definition for S given in 26. In
view of this definition, we easily see that it suffices to establish what follows
(for arbitrary polynomials a and B of degrees m and n respectively in a variable
£, with leading coefficients a_ and ﬁ;, and for an arbitrary integer k):

(1) if a or £ is the polynomial 0, then Gg(a,ﬁ) is equivalent to (0 = 0) for
k=0, and to (0 = 1) for k # 0;

(2) if m + n is even, then GX(a,f) is equivalent to
{[(a. = 0) Acg(adf(a),ﬁ)] v [(,Bn = 0) AGk(a,Rd,(B) )] Vv
[~(a..3" = 0) Acg(ﬁ,ng,(a,ﬁ))]};
(3) if m+ n is odd, then Gf(a,f) is equivalent to
{[(a_ = 0) /\c;@df(a),,e)] v [(5,. = o) /\Gg(a,adg,(m)] v

[(a.-ﬁ" > 0) /\G?‘(,B,Rf(a,ﬁ))] % [(o > a,+8,) /\Gz“(,B,Rf(a,,B))] }

Let £ ,..., é; be all the variables which occur in the coefficients of a or £
or both.

It is easily seen that the proof of (1) reduces to showing that, in case a =0
or =0, the following sentences are true:

(4€) ... (4€,)CE(a,B), for k = 0;

(A8). .- (4£)~CE(a,B), for k ¥ 0.

Now, we notice by Definition 15 that, for every non-negative integer p, D2(0) = 0.
Hence we conclude by Definition 19 that, in case a = 0 or 8= 0, the formla F&(a,f)
is satisfied by all valuesoféa,..., £, if k = 0, and by no such values if k4 0. From
Definition 22 we then easily see that the same applies to the formula Gg(a,ﬁ); and
this is just what we wanted to show.

Analogously, by means of easy transformations, we see that the proof of (2) and
(3) reduces to showing that the following sentences are true:
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) (48)-- (Aé){~(a ‘B, = o) ——[ch(a B) =—=Ck (,B R.(a, B))] } for m +n even;
(Aﬁl) .- (A8) { (a..-ﬁn > 0) —~ [Gg(a,,@) -——G?x(ﬁ,ﬂf(a,ﬁ))] } , for m +n odd:
(ag,). - (Af.){ (©> a.-,Bn)"'[Gz(a,ﬁ)‘-’cz-l(ﬁ,ﬁf(a,,8))]}, also for &+ n odd.

Actually it turns out to be more convenient to establish, instead of (4), (5)
and (6), certain stronger statements. For this purpose we introduce the formula
Hp(a.ﬁﬂ expressing the fact that there are just p numbers £ such that the difference
between the order of £ in a and the order of £ in £ is an odd integer, not necessarily
positive. A precise formal definition of HE(a,f) hardly needs to be given here. The
sentences whose truth we want to establish can now be formulated as follows (letting
v and & be arbitrary polynomials in £, whose coefficients involve no variables except

é;,..., ,» and letting p and q be arbitrary non-negative integers):

(48)- - (AL) { 0,8 A A (037 = oy = 8) An(ay hy = 0)]_.
:cg(a,ﬁ)«—»cg(/a,m]} , for p even;

(Aé,)--.(Aé,){ :H’;.(a,ﬁ) A4 (arf28 = By = 8) A (o, A, > o)]—»
:G’é(a,,B)‘—’G?‘(,B,S)] } , for p odd;

(Afl)...(Aét) { :Hg(a,ﬁ) Ao (a9 = poy - a) /\(o > ah.ﬁn)]u_.

b’é(a,ﬁ)«—»cg*(ﬁ,m] } , also for p odd.

It is easily seen that the truth of (7), (8), and (9) implies that of (4), (5),
and (6) respectively. We shall sketch the proof of this for the cases (7) and (4).
Thus, assume (7) to be true and m + n to be even. Consider any fixed but arbitrary

set of values of £ ,..., £, and suppose the hypothesis of (4) to be satisfied. Let
p be the (uniquely determlned) integer for which Hp(a,ﬁ) is satisfied (by the given
values of £ ,.. » £,). An elenentary algebraic argument shows that p is congruent to

m+n modulo two, there fore p is even, and (7) may be applied. We now set ¢ = 0 if
m<n, and g = m — n + 1 otherwise; and we construct a polynomial ¥ in &, with coef-
ficients involving no variables except those occurring in the coefficients of a or
£, and such that

a-B = By = Re(a,p)

holds for every value of £. (Regarding the possibility of constructing such a ¥, see
Theorem 25.) We then see that the hypothesis of (7) is satisfied with & replaced by
Rf(a,ﬁ). Hence the conclusion of (7) is also satisfied. This conclusion, however, with
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the indicated replacement, coincides with the conclusion of (4). The proof now reduces
to establishing the truth of (7), (8), and (9). It is convenient in this part of
proof to avail ourselves of customary mathematical language and symbolism. Also, we
shall not be too meticulous in trying to avoid possible confusions between mathematical
and metamathematical formulations.

Given a polynomial @ and a number A, we shall denote by f(X\,a) the order of
A in a: i.e., the uniquely determined non-negative integer r such that Mi(a) holds.
The function f is thus defined for every number A, and for every polynomial a which
does not vanish identically.

Similarly, for any given polynomials a and £ in & we denote by g(a,f) the
integer k for which Cg(a,ﬁ) holds. From the definition of Gg(a,ﬁ) (see Definition
22) it follows that such an integer always exists and is uniquely determined. It
can be computed in the following way. We consider all these numbers A for which
fha) = f(\,£) is positive and odd, and we divide them into two sets, P and N; A
belongs to P (or N) if there is an open interval whose right-hand end-point isA,
within which the values of a and £ have always the same sign (or always different
signs). Both sets P and N are clearly finite, and the difference between the number
of elements in P and the number of elements in N is just g(a,B). Thus g(a,f) can
be positive, negative, or zero; in case a or [ vanishes identically, g(a,f) = 0.

Finally we introduce the symbol h(a,B8) to denote the integer p for which
HP(a,f) holds; in other words, h(a,5) is the number of all those numbers A for which
(A,a) = f(A\,B) is odd ~ though not necessarily positive.

For later use we state here without proof (which would be quite elementary) the
following property of the function f defined above:

(10) Let a, £, v, and & be polynomials in &, such that
@29 =y f - 8

holds for every value of £, 5, being the (nonvanishing) leading coefficient
of £ and g some integer. If, for any given number A, f(A,R) > f(A,a) — so
that a, as well as 5, does not vanish identically — then f(A,a) = f(A,8)
(so that & does not vanish identically either). Similarly, if f(A,R) >
f(\,3), then f(X,a) = f(A,5).

We now take up the proof of (7), (8), and (9), which will be done by a simul-
taneous induction on h(a,B) = p. The reader can easily verify that (7), (8), and (9)
hold in case the polynomial & vanishes identically; therefore we shall assume hence-
forth that & does not vanish identically.

Assume first that h(a,B) = 0. Thus there are no numbers A such that flx,a) -
f(\B) is odd. A fortiori there are no numbers A such that f(A,a) = f(\,A) is positive
and odd; and hence g(a,f) = 0. Furthermore, there are no numbers A such that f(X\,/F) -
f(\,8) 1is positive and odd; for if such a number A existed, we should have f(A\,a) =
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f(X,8) by (10), and hence f(X\,a) = f(A,B) would be odd. Consequently, g(5,6) = 0 and
therefore gla,B) = g(£#,8). Thus in this case (7) proves to hold, while (8) and (9) are

of course vacuously satisfied.

Assume now that (7), (8), and (9) have been established for arbitrary polynomials
a and B with h(a,B) = p (p any given integer). Consider any polynomials a and f in
£ with nonvanishing coefficients a_ and 5,, and with

(11) h(ayﬁ) =p t 1 ’
as well as two further polynomials 7y and & in £ such that
12) - a*pB2? = y+ = § holds identically for some non-negative integer g .

Two cases can be distinguished here, according as a.'ﬁ& >0 or 0> a.'ﬁa; since the
arguments are entirely analogous in both cases, however, we restrict ourselves to the
case

(13) ai‘ﬁa >0 .

Our assumption (11) implies that there are exactly p + 1 numbers A for which
f(h,a) = f(NAP) is odd. let
(14) A, = the largest A such that f(A,a) = f(A,B) is odd.

Condition (13) implies that for sufficiently large numbers £ > Ao the values of
a and £ are of the same sign. This can be extended to every number £ > A_ {(not a root
of a or B), since, by (14), there is no number £ > Ao for which f(£,a) — f(£,5) is

odd (and therefore at which one of the polynomials a and S changes sign while the
other does not). Hence, and from the fact that f(xb,a) - f(Ab,ﬁ) is odd, we conclude:

(15) There is an open interval whose right-hand end-point is Ab' within which the
values of a and 3 are everywhere of different signs.

We now introduce three new polynomials a’, ', and &' by stipulating that the
equations

(16) a'=a(h =8, v =y(c-8., &=8(,-¢

hold identically. By (12), (13), and (16) we obviously have:

an a’+B294 = y'+B — &' holds identically for some non-negative integer g ;

.

(18) a;+l' fL < 0, where a;+1 is the leading coefficient of a';

(19)  f(A,a") = f(r,@) + 1, and also f(A,,8') = f(A,,8) + 1 (since 8 and 3' do

not vanish identically);
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(20) f(£,a") = f(£,a) for every & # A., and similarly f(£,8') = f(£,8) for every
£ £ A (since & and &' do not vanlsh identically).

From (19) and (20) we conclude that the set of numbers A such that f(M\,a') -
f(\,B) is odd differs from the analogous set for a and 5 only by the absence of

Ko; thus, using also (11),

h(a',B) = h(a ,B8) =1 =p .

Consequently, our inductive premise applies to the polynomials a’ and B: i.e., sen-
tences (7), (8), and (9) are true if a is replaced by a’. Remembering the meaning of
g(a,B), and taking account of (17) and (18), we conclude:

(21) g(a,B)

g(B,3') in case p is even;

(22) g(a',B) = g(B,8') + 1 in case p is odd.

We now want to show that
(23) g(c, ) = g(B,8) = g(a'",B) - g(£,8') = 1

To do this, we first notice that by (16):

(24)  The values of a and a’ are of the same sign for every £ < A  (not a root of
a); similarly for the values of & and &'.

We also observe that:

(25)  There is no & > Ab such that f(£,5) — f(£,8) is positive and odd; similarly
for S and &',

For, if f(£,A - f(£,8) were positive and odd for some & > K then, by (10) and
(12), f(£,a) = f(£,5) would be odd for the same & > K and th1s would contradict
(14). The argument for S and 8’ is analogous; instead of (12) we use (17), and when
stating the final contradiction we refer to (14) combined with the first part of
(20), instead of merely to (14).

We now distinguish two cases, dependent on the sign of f(% ,a) ~ f(K ,B).
view of (20), (24), and (25), the only number which can cause a ®difference in the
values of g(a,ﬁ) and g(a’,£), or in the values of g(£,8) and g(£,3"), is the number
Ao‘ If now

(A) f(ha) = (A B) >0,

then by (14) and (15) the number K effects a decrease of g(a,f) by 1; while, as a
result of (19), it has no effect on the value of g(a’,B). Hence

(26) gla,B) = gla',B) - 1.
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Furthermore, in the case (A) considered, f(Ao,ﬁ? - f(Ko,B) cannot be positive by
(10); and therefore f(Xo,ﬁD - f(Ko,S') cannot a fortiori be positive by (19). Thus
in this case the number Ao proves to have no effect on the values of g(£5,8) and
g(5,8'); and consequently

27 g(B,8) = g(B, %) .
Equations (26) and (27) at once imply (23).

Turning to the case |
®) FQea) = F0H) <0,

we first notice that under this assumption A does not affect the value of g(a,). Nor
does it affect the value of g(a',B), since, by (14) and (19), f(Ko,a') - f(Ko,ﬁo is

even. Therefore,
(28) gla,B) = gla', B)

Moreover, in the case (B) under consideration, we see from (10) that f(Ko,a) =
f(AO,B), and hence, using (14), that

(29) f(r+B) = f(7,+8) is positive and odd.

Le
‘ f(ha) = £\ ,8) = r

Thus A is of order r in a and 8, and of a higher order in 5. Consequently there are
three polynomials a', 8", and 8" such that the equations

N R R R L
hold identically; >\0 is aroot of A", but not ofa"™ or 5". We obtain from (12) and (30):
an_/@:q - ,y.Bl/ - 5,

Consequently, the values of a" and 8", for £ = Ao, have different signs. Therefore
there is an open interval, whose right-hand end-point is Ko' within which the values
of a" and 8" have different signs; and, by (30), this applies also to a and 6. By
comparing this result with (15), we conclude that there is an open interval whose
right-hand end-point is A_, within which the values of B and & have the same sign.
Hence, and by (29), Ko contributes to the increase of g(£,8) by 1. On the other
hand, by (19) and (29), f(Ab,ﬁQ - f(Ab,S') is even, so that A  has no effect on the
value of g(£,8'). Thus, finally,

(31) g(B,8) = g(B,8") + 1.

Equations (28) and (31) again imply (23). Hence (23) holds in both the cases (A) and (B).

From (21), (22), and (23) we obtain at once:
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g(a,B)
gla B)

Thus we have shown that (7), (8), and (9) hold for polynomials a and £ with h(a,f) =
p + 1; and hence by induction they hold for arbitrary polynomials a and £. This
completes the proof.

g(5,8) in case p + 1 is even ;

g(5,8) = 1 in case p + 1 is odd .

DEFINITION 28. Let
aza taft..tal"

B=f + [E+.+B e
n
M= Yo Y et €

1,n
M

n
’);E)’r,0+'yr,l§+...+’)’ &'

r,nr
be arbitrary polynomials in £. We define the function T as follows:

(i) If @ is a foraula of the form
(Eﬁ) [@a=0] ,

then we set

T(§) = [~(ao =0 V...V~ (a, = o)] ASG*(a,Dy(a)) .
(11) If @ is a formula of the form
[~<ao = o) v...v~(a_ = 0)]/\(f§)[(a = 0)A (B > 0)] ,

then we set

() = { [m(ao = 0)V...v~(a, = 0) ]/\

(Scérl[a,pf(a)] /\SG;rz [Pg(az + B%), DB (a2 + Bz)] A

2 3 o )
0<r,rycm  SG °[a,Df<a>-fﬁ]>}

(iii) If & is a formula of the form
[~ (= 0)V...V~ (o, = o)]/\ (fg:)[a =0)A (> 0)/\.../\(’)/r>0):| ,
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where r > 2, then we set

T(§) = \/ {T(gSl) /\T(@z)/\r(gss)} ,

k: + -
2 rl r2 r3
0<r,r,r <m
— 1 2 a -

$, = {[’\'(ao = 0)v...v~(a, = o)] A
E[(e= )N 0> A A Gy > ) AB(ry ) > 0}}.

8, z{[w(ao = 0)v...vr(a, = 0)] A
B[ = 9 629 nen G 2R G 2) o

&, E{[N(ao = 0> Vooovn(a, = 0)] A
(ff)((a =) A(y, > OAA(,, > o> AR, [("”'Vr-;%] > o>};
in the case r = 2 we omit the expression

CR) Y CA 0) A

from the formulas defining § , &,, and &, .

(iv) If & is a formula of the form
~(a, = 0>/\(€§)[<a =0)A(y, > ) A...A(y, > o)] :
then we set
T(¢) E(l(an = 0)/\T{ [”(% =0V...V~ @, = 0)] A
(E) [(a = 0)AQ, > )A..A(,> 0)] }>

(v) If & is a formula of the form

[~<yl’n1: o)/\ ~<y“2 = o)/\.../\ 'v('yr’nr = o)] A (EE) [(yl} 0)A.A(y, > o)] .
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then, if k > 0, we set
T($) = (6 =1) ;

while if k=0 andn +*+n_ =0, ve set

1 4 [-0r0 = Oty =]l 0>, |

andifk=()andn‘ +...+nr>0, we set
T($) E{w(’yln = 0)/\.../\ ~<'yrn = ) A [(0>'y“1 )V...\/(O>yrn )]} A
s | Uy (e § >r
{[o > (-1)"‘-7,,,,1]V...v[o >(-1)"- 7]} A

T{~(3 = O)A(fg)q%%(yl ) O]/\('yl>0) /\.../\(’);>0)>}

where & is the leading coefficient of DfPf(’yl'..."yr).

(vi) If ¢ is a formula of the form
(Iié) [(71> 0)/\... /\('yr>0)] .

and if k + 0, we set
T(g) = (0 = 1) ;

while if k = 0, we set

{[(’)’1,0: A A @] V...V [(x'o: 0) A...A @v",:(D] } v

T(P)
\

(sl,...,sr) in'S

Iy, NN AT([“(%,sf 0) A'--A"'(7r,sr= 0)] A

1,:1 *

(E€) [(Rd?'s‘(yl) > 0) A .{/\(Rd;’_ () > 0)])} :

where S is the set of all ordered r-tuples (sl,...,sr) with 05815"1""’033 <n_,

r— r

B-Eh,lz [(’Yk,l_H:O) /\.../\(')’k’nk=0):l for 0<l<n,, and gk,l = (0=0) for l=nk.
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(vii)

If § is a formula of the form

€9 [(=0)AG, > ) AN, > 0)
then we set

T(F) = T{[~(ao = 0)V...V~(q, = o)l/\@} v
([(ao = 0)A...A (o, =

(viii) If @ ts a formula of the form

0)] /\T{(if) (6> YA.A Gy > o)]}) .

#6) [(y= ) A.A = 0)]

then we set

e T{(f‘f) [Pf(%z*"'”r') - 0}} '

(ix) If @ is a formula of the form

(EE) [<71= A A (= A (> 0)AA (> o>]

where 1 < s < r, then we set

T(g) =T {(Ef)[Pf(yf fot2) = 0A(y,, > O)AA (> o)]}
(x) If & is a formula, not of any of the previous forms, but such that

$ = (lfrf)(gsl/\gsz/\.../\ §r>

where each $, is of one of the forms 7y, = 0 or ¥, > 0, and if j,,...,j, are the values
of i (in increasing order) for which &, = (y, = 0); and if j, . ,...,], are the values
of i (in increasing order) for which &, = (y, > 0), then we set

T($) = f({é)(éjl AL A gsj)

THEOREM 29. Let £ be any variable, and let @ be any formula such that T(¢) is defined
(by Definition 28). Then T($) is a formula which contains no quantifiers, and no

variables except those that occur free in &. Moreover, & is equivalent toT(P).
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ProoF. The first part follows immediately from Theorem 27 and Definition 28.

We shall prove the second part by considering separately the ten possible forms
¢ can have according to Definition 28. As in the proof of Theorem 27, we shall use
here partially ordinary mathematical modes of expression, without taking any great
pains to distinguish sharply mathematical from metamathematical notions.

Suppose first, then, that & is of the form 28 (i): i.e., that @ = (E£) (a = 0),
where a is a polynomial in £. We are to show that ¢ is equivalent to the formula

[m(ao = 0>v...v~ <a‘ = o)]/\ SG%k(a,Dé(a)) .

where Qoyerny O, are the coefficients of a. Since by Theorem 27 the latter formula is

equivalent to
[ (o = V...V~ (5, = ]A G3* (a0 (@)

we see that our task reduces to establishing the following: if a is any polynomial
in & which is not identically zero, then o has k distinct roots if and only if
Gék(g,Dé(a)) holds. Let s, be the number of numbers & such that: (1) the order of

£ in a is by a positive odd integer higher than its order in D (a); (2) there exists
an open interval whose right-hand end-point is £, within which the values of a and
D, (a) have the same sign. lLet s, be the number of numbers £ which satisfy condition
(1) above and moreover the condition: (3) there exists an open interval whose right-
hand end-point is £, within which the values of a and Dg(a) have different signs. By

the remark preceding Definition 22, we see that ng(a,Dé(a)) is true if and only if

~k = s, ~s,. Moreover, it is readily seen that s, = 0, and that s, 1s simply the

number of distinct roots of a. Thus ng(a,Dg(a)) holds if and only if k is the number
of distinct roots of a, as was to be shown.

In order to treat the case where ¢ is of the form 28 (ii), it is convenient
first to establish the following: Let a and 8 be polynomials in &, let t, be the
number of roots of a at which 8 is positive, and let t  be the number of roots of a
at which B is negative; then.SGEC(a,Dg(a)'gﬁ) is true if and only if ¢ = toTt,. This
can easily be done by the sort of argument applied in the preceding paragraph —
making use of Theorem 27 and the remark preceding Definition 22. We notice also that,
since we are dealing with the algebra of real numbers, the common roots of two
polynomials a and £ coincide with the roots of a® + £?. Now let ¢ be a formula of
the form given in 28 (ii). To show that ¢ is equivalent to T($), it suffices to
show that, if k is a non-negative integer, and a and S are polynomials, where a
is of degree m and not identically zero, then the following conditions areequivalent:
(1) there are exactly k roots of a at which B is positive; (2) there are integers
rov Tao and r, satisfying 2k =r, —r, +r,, 0 <r <om, 0<r,<m m<r,<m,
such that r, is the number of roots of a, r, is the number of roots common to a and
B, and ry is the difference between the number of roots of a at which £ is positive
and the number of roots of a at which £ is negative. Now a has at most m roots; hence,
if r, r,, and r, have the meanings indicated in (2) — i.e., if r| is the number

2 3
of roots of a, etc. — we obviously have

0<r,<m,0<r,<m,and ~<r, <m.
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Let k be the number of roots of a at which £ is positive, and let r. be the number
of roots of a at which £ is negative. We see immediately from the definitions of
rys Tys Ty, k, and r, that

Eliminating r, between these two equations, we obtain

2k=rl-r2+ra.

Thus (1) implies (2); the proof in the opposite direction is almost obvious.

To prove our theorem for formulas of the form 28 (1ii), it suffices to show
that if a is a polynomial of degree m, and not identically zero, and if 7,,..., 7,
are any polynomials, then the following conditions are equivalent: (1) there are
exactly kvroots of a at which Yyse--s ¥V, are all positive; and (2) there are three
integers r_, r,, I, satisfying 2k = rp +r, "rg, 05 Tys Tar Ty S, such that r is
the number of roots of a at which Yiveoos YVeogo and '}’r_l”}/f are all positive, r,is
the number of roots of a at which Yereoor Yeogs and ’)’rz_l")”_ are all positive, and
r, is the number of roots of a at which Yiveoer Voogo and ~1*y,_,*¥, are all positive.

In fact, if r, r,, and r, have the meanings just indicated, we obviously have

0O<r,r,r.<m.

17 '20 Ty

Let r, be the number of roots of a at which Yyseees Ypogr Yyo, aTE all positive, and
Y, is negative. let Ts be the number of roots of a at which Yiveeor Yeos and ¥, are
all positive, and ¥, _, 1is negative. Let k be the number of roots of a at which Vs oo
Y, are all positive. From the definitions of Fiw Tos Tas Tgy Ty and k we see that

k+r =r
Py 1
k+r=r
5 2
r+r-=r
5 3

Eliminating r, and r, from these equations, we obtain

2k = r1+ BT T
which completes this part of the proof.

To prove our theorem for formulas of the form 28 (iv), we need only notice that

~(e = 0)A~(a, = 0) V...V~ (e, = 0)]

~(a, = 0) .

is equivalent to
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Now suppose that @ is of the form 28 (v): i.e., that & is
Hy,,,,l = o)/\.../w(y,,,,' = o)] A (EE) [(“/1 >0)A.. A > o)} :

We notice first that if & > 0, then the formula

(EE) [('yl > 0)A A Q> 0)]

is never satisfied (i.e., is satisfied by no values of the free variables occurring
in it), so that @ is never satisfied either — and hence is equivalent to (0 = 1). If

k = 0, and n +...+n =0, thenn =n, =...=n_ =0, and hence $ reduces to

[«,(71’0 = )AL Ay, = o)] A (EE) [(’yl’o > 0)A.A G, > o)] :

» % o are terms which do not involve £; since
’

(ES) [(71,0 > 0) A ..A <7r’o > o)]

where Nioreer
.

is then equivalent to
[orar YA A G 0]

we see that @ is equivalent to T($), as was to be shown.

Thus we are left with the case that @ is of the form 28 (v) where k = 0 and
n +...+n > 0. To establish in this case that § is equivalent to T($), it suffices
to prove: If Yys++-++s ¥, are polynomials in £ not all of which are of degree zero, and
whose leading coefficients areall different from zero, then a necessary and sufficient
condition that there exist no value of £ which makes all these polynomials positive
is that the following three conditions hold: (1) at least one of the polynomials
havena negative leading coefficient; (2) at least one of the polynomials satisfy
(-1) iyh . < 0 (where n, is the degree of the polynomial, and Yi ni its leading
coefficient); (3) there exist no value of £ which is a root of the derivative of
the product of the polynomials, and which makes them all positive. To see that the
condition is necessary, suppose that Yyre+er Y, are polynomials which are never all
positive for the same value of £; then it is immediately apparent that (3) is satis-
fied; to see that (1) is satisfied, we remember that, if the leading coefficient
of a polynomial is positive, then we can find a number g such that the polynomial is
positive for all values of the variable £ greater than u; the proof of (2) issimilar,
by considering large negative values of the variable. Now suppose, if possible, that
the condition is not sufficient: i.e., suppose that (1), (2}, and (3) are satisfied,
and that there exists some & which makes all the polynomials positive. Let A be a
value of £ at which % > 0,..., % > 0. Then we see that, for & = A,

N Yt %> 0.
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On the other hand, since (1) is true, there exists an i such that y; has a negative -
leading coefficient. Hence we can find a A' which is larger than A and sufficiently
large that ¥; is negative at A'. Then 7, is positive at A and negative at A’ and
hence has a root between these numbers. Since every root of ¥, is also a root of
Yy Wy e Yy We conclude that ¥, *y,*...*Y, has a root to the right of A. Similarly,
making use of (2), we see that 7, *),*...*Y, has a root to the left of A. Now let p
be the largest root of % *7y,*...*y, to the left of A and let K, be the smallest root
of Y Yy Yy to the right of A. Then VAN AP A is positive in the open interval
(/.Ll,,uz) and zero at its end-points. We see that no ¥, can have a root within the
open interval (/,Ll,,uz); since each Y is positive at A, which lies within this interval,
we conclude that each ; is positive throughout the whole open interval. On the other
hand, since ¥, *7,*...*7, is zero at 4 and at u,, we see by Rolle’s theorem that there
is a point v within (u ,4 ) at which the derivative of ¥ *7,*...*Y, vanishes. Since
this contradicts (3), we conclude that the condition is also sufficient.

Now suppose that ¢ is of the form 28 (vi). If k # 0, it is obvious that @ is
equivalent to T($). Hence suppose that k = 0. Two cases are logically possible: either
one of the polynomials 7, ,..., 7, vanishes identically, or none of themdoes. In
the first case, ¢ obviously holds. In the second case, let s, for i =1,..., r, be
the largest index j such that Vi (i.e., the jth coefficient of ’}/i) does not vanish.
Then & is obviously equivalent to the formula

¢ E[’\'(yl’sl =o)/\. : ./\~(yr,sr:o)]/\(fg)<[ﬂd§"f‘l(yl) > o] A.. .A[Rd;""(y,) > oD

However J is of the form 28 (v), and hence, as we have shown above, is equivalent to
T(J). In view of these remarks, by looking at the formula defining T($) in 28 (vi),
we see at once that ¢ and T(¢) are equivalent.

If & is of the form 28 (vii), our theorem follows from the obvious fact that ¢
" is equivalent to :

[ = v = 0] s pv{ [ 0 ren o] ne }

If & is of the form 28 (viii), or of the form 28 (ix), our theorem follows from
the fact — which was already used in discussing 28 (ii) = that the common roots
of r polynomials 7%, ,..., ¥, coincide with the roots of ’yf ot Vf.

If § is of the form 28 (x), our theorem follows from the associative and com-
mutative laws for conjunction, familiar from elementary logic.

DEFINITION 30. Let &, ¥, and & be any formulas, and £ any variable.

(i) If & is an atomic formula, we set
ug = ¢ .
(ii) If §= (§V 6), then ve set
u@ = (v vus] .
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(iii) If &= (F A 6), then we set
@ = [v@ A v |
(iv) If $=~J, then ve set
U@ =~ U(g) .
(v) If = (EE) T, and
U =V V..V g,

where Q&, for i =1,..., n, is a conjanction of atomic formulas, then we set

WP = ~T [(f@ gl]vw [(gg) g;,] V...V ~T[(§§) g,n].

Tueorex 31. If & is any formula, then U(®) is a formula which contains no quanti-
fiers, and no free variables except variables which occur free in &. Moreover, & is
equivalent to U(F).

Proor. By induction on the order of ¢, making use of Theorems 14 and 29.

CoRroLLARY 32. If @ is any sentence, then U($) is an equivalent sentence without any
variables or quantifiers.

The first part of our task as outlined at the beginning of this section has
thus been completed. We have established a general procedure which permits us to
transform every formula (and in particular every sentence) into an equivalent formula
(or sentence) without quantifiers('2)»(13) Before continuing the discussion, we
should like to give a few relatively simple examples in which such a transformation
has actually been carried out. The equivalent transformations U’'(&) which are given
below for some formulas ¢ do not coincide with U(@) but can be obtained from the
latter by means of elementary simplifications.

Let £ be any variable, and Qoy @y Gy, Gy, ﬁ%, 51, and ﬁz any terms which do not
involve £. If

& = (E&) [ao taf b o€ g = o}
we obtain an equivalent formula by setting
U(@) E{(ao =0) \/[w(a1 =0) Aa, = o)] vV
[ o= 0) v (troyeay>a)] v 6= ) |
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(where, as can easily be guessed, 4 stands for 1 + 1 + 1 + 1). If
é = (Eé) [ao + al.f + az.fz + aa.§3 > 0:' ,
we can put
r@ f oy > 0) V(e draga) V(o > )V = ) b
1f, finally,
G = EO[ (ot oy £ 1 ogE T O)A(E, ¢ K€+ B> 0) ]
we can put
U@ { (e, 20) A, =0)A (o, = 0) A (5> )V (@>4-4:2) v (5 >0)] v
(e, =0) Aoy =) A (a4, +a2e8, >age8)] v
:m(az :0>/\ ~(4‘a0'a2>a"1’> A (a‘f'ﬁz +2'a:',’3(7) >2'a0'a.2-,32 +a1'a2'ﬁl>} v
—’V(a2:0>/\<af>4ao'a2)/\

2uP2 4y ey SR 423 e 2,025 0 oy oR s ey ey R e sRA
(ao L2ta o, fB+af B, ta2f2>a ra BB, + 2 a ra BB, ta ra, ) /ﬁ):'}.

We now turn to the second part of our task. We want to correlate, with every
sentence ¢ which contains no variables or quantifiers, an equivalent sentence of a
very special form: in fact, one of the two sentences

and

We first consider terms which occur in such sentences. As 1s easily seen, every such
term is obtained from the algebraic constants 0, 1, and -1 by combining them by means
of addition and multiplication. Hence we can correlate with every such term a an
integer n{(a) in the following way.

DeriniTION 33. He set

n(l) =1,
n(—l) = -1,
n(0) = 0.
Ifa= (B+7y), then ve set
n(a) = n(B) + n(y).
If a= (By), then we set

n(a)

n(B) n(y).
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ReuaRk. It should be emphasized that the above definition correlates integers, not
expressions, with terms. It is for this reason that we have written, for example,

n(l) =1,

instead of

n(l) 1;

n(1) is the integer 1, not a name of that integer. In the equation
n(a) = n(B) + n(y)

the addition sign indicates the sum of the two integers n(f) and n(y). n(a) is what
would ordinarily be called the "value" of the expression a; thus, if

a=1+(1+1)(1+ 1), then n(a) = 5.

On the other hand, we could use for our purposes, instead of integers, certain
expressions of our formal system of algebra — in fact one of the terms of the follow-
ing sequence

. (1) + (-1), -1, o0, 1, 1 +1,..

We can use these special terms since they can obviously be put in one-to-one
correspondence with arbitrary integers. As a result of this modification, however,
Definition 33 and the subsequent Definition 34 would assume a more complicated form.

DEFINITION 34. Let a and £ be terms, and &, g, and 8 formulas, none of which contain
any vartiables.

(i) Ifg=(a=7F), ve set

W(@) = (0 =0)
in case n(a) = n(B3), and otherwise
W(E) = (0=1) .
(i1) If §= (a > B), we set
W(E) = (0 = 0)

in case n(a) > n(B), and otherwise

W) =(0=1).

(iii) If$= WYV ), we set

W(g) = (0 =0)

in case either W) = (0 = 0) or W(6) = (0 = 0), and otherwise

MF) = (0 =1) .
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(iv) Ifg¢= (YN 6), wve set
(@) = (0 = 0)

in case both W(@) = (0 = 0) and W(6) = (0 = 0), and otherwise

W) = (0=1) .
(v) Ifg=~J, we set
H(P) = (0 = 0)
in case W) = (0 = 1), and otherwise
W(P) = (0=1) .

TeeorREM 35. If @ is any sentence which tnvolves no quantifiers or variables, then
W(&#) is one or the other of the two sentences 0 = 0 and 0 = 1. Moreover, $ is equiva-
lent to W(P).

Proor. By induction on the order of .

THEOREM 36. If & is any sentence, then WU(P) is one or the other of the two sentences
0=0and 0 = 1. Moreover, ¢ is equivalent to WU(P).

ProoF. By 32 and 35.

Now by analyzing the definitions of W, U, and the preceding functions, we notice
that for any given sentence $ we can actually find the value of WU(Z) in a finite
number of steps('*), By combining this with the result stated in Theorem 36, we
obtain

TrneoreM 37. There is a decision method for the class of all true sentences of ele-
mentary algebra(18),

. In concluding this section we should like to remark that the minimum number of

steps which are necessary for the evaluation of WU($) is of course a function of the
form of § — in particular, this number depends on the length of @, on the number of
quantifiers occurring in it, and so on. The problem of estimating the order of in-
crease of this function is of primary importance in connection with the question of
the feasibility of constructing a decision machine for elementary algebra.
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SECTION 3.

EXTENSIONS TO RELATED SYSTEMS

In this section we shall discuss some applications to other systems of the
restlts obtained in Section 2, as well as some problems that are still open.

The decision method found for the algebra of real numbers can be extended to
various algebraic systems built upon real numbers — thus to the elementary algebra of
complex numbers, that of quaternions, and that of n-dimensional vectors. We can think
of the elementary algebra of complex numbers, for example, as a formal system very
closely related to that described in Section 1l: variables are now thought of as
representing arbitrary complex numbers; the logical and mathematical constants remain
unchanged; but now the greater-than relation is thought of as holding exclusively
between real numbers — thus we can define real numbers within the system by saying
that x is real if, for some y, x > y. If one wishes, one can enrich the system by
a new predicate Rl(x), agreeing that RI(x) will mean that x is real (19},

The results obtained can furthermore be extended to the elementary systems of
n-dimensional Euclidean geometry. Since the methods of extending the results to the
algebraic systems and the geometric systems are essentially the same, we shall consider
a little more closely the case of 2-dimensional Euclidean geometry.

We first give a sketchy description of the formal system of 2-dimensional
Euclidean geometry. We use infinitely many vartiables, which are to be thought of as
representing arbitrary points of the Fuclidean plane. We use three constants denoting
relations between points: the binary relation of identity, symbolized by "="; the
ternary relation of betweenness, symbolized by "B", so that "B(x, y, z)" is to be
read "y is between x and z" (i.e., y lies between x and z on the straight line
connecting them; it is not necessary that the three points all be distinct; B(x, y, z)
is always true if x = y or if y = z; but we cannot have x = z unless x = y = z); and
the quaternary equidistance relation, symbolized by "D", so that "D(x,y; x',y')" is
to be read "x is just as far from y as x’' is from y'" (or, "the distance from x to
y equals the distance from x' to y'") (17)_ The only terms of this system are vari-
ables. An atomic formula is an expression of one of the forms

e=mn BELE) D mem),
where

£,m & 6plyés and 7'

are arbitrary variables. As in the formal system of elementary algebra we build up
formulas, from atomic formulas by means of negation, conjunction, disjunction, and
the application of quantifiers; we also introduce here as abbreviations the symbols

—— and -_—

Sentences of elementary geometry, in our formulation, express certain facts
about points and relation between them. On the other hand, most theorems which one
finds in high-school textbooks on this subject involve also such notions as triangle,
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plane, circle, line, and the like. It is easy, however, to convince oneself that a.
considerable part of these notions can be translated into the language of our system.
Thus, for example, the theorem that the medians of a triangle are concurrent can be
expressed as follows (cf. the figure immediately following the formula):

(Ax)(Ay) (Az) (Ax")(Ay')(Az' ){["'B(x,y,l)/\"' B(y,z,x) A\~ B(z,x,y) A B(x,y',2) A
B(y,z',x) A B(z,x,y) AD(x,24 2", y) A
D(y,x';x, z) /\D(z,y';y'.x)] —

(Ew) [B(x,w. 2) AB(y, v, y') A\ B(z, '”.Z')] }

On the other hand, it would not be difficult to enrich our system of geometry
so as to enable us to refer to these elementary figures directly. Regarding more
essential limitations of our system, see the remarks in the Introduction.

In order to obtain a decision procedure for elementary geometry, we correlate
with every sentence ¢ of elementary geometry a sentence &* of elementary algebra in
the sense of Section 1. The construction of ¢* can be roughly described in the follow-
ing way. With every (geometric) variable £ in @ we correlate two different (algebraic)
variables £ and £, in such a way that if £ and 7 are two different variables ing,
then &, &, 7, and 7 are all distinct. Next we replace in @ =very_quantifier expression
(E£) by (EE)(E£); every partial formula £ = 7 by (£ =7) AN(Z=%),; every formula
B(£,m,1) by

0)]A

[(E-DG-2>OV(E-DG-D=0);

[(5-8G-n=G-2@-B]A(E-DG-0>0)V(E~-D @~ 8

and every partial formula D(£,7;u,v) by

E-r+E-D2= G-+ V)
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It is now obvious to anyone familiar with the elements of analytic geometry
that whenever @ is true then ¢* is true, and conversely. And since we can always
decide in a mechanical way about the truth of ¢*, we can alsc do this for &.

The decision method just outlined applies with obvious changes to Euclidean
geometry of any number of dimensions (%), And, since it depends exclusively on the
possibility of introducing into geometry a system of real coordinates, it will apply
as well to various systems of non-Euclidean and projective geometry(1®),

We can attempt to extend the results concerning elementary algebra in still
another way: in fact, by introducing into the system of algebra new mathematical
terms which cannot be defined by means of those occurring in the original system.
The new terms may denote certain properties of numbers, certain relations between
numbers, or certain operations on numbers (in particular, unary operations — i.e.,
functions of one real variable). In consequence of any such extension of the original
system we are presented with a new decision problem. In some cases, from the results
known in the literature it easily follows that the solution of the problem is nega-
tive — i.e., that no decision method for the enlarged system can ever be found, and
that no decision machine can be constructed. In view of the Godel-Church-Rosser
result mentioned in the Introduction, this applies, for instance, if we introduce
into the system of real algebra the predicate In, to denote the property of being
an integer (so that In(x) is read: "x in an integer"); and, by the result of Mrs.
Robinson, the same applies to the predicate Rt, denoting the property of being
rational. The situation is still the same if we introduce a symbol for some periodic
function, for instance, sine; this is seen if only from the fact that the notion
of an integer and of a rational number can easily be defined in terms of sine and
the notions of our original system; thus we can say that x is a rational if and
only if it satisfies the formula

(Ey)(E2) [(x*y = 2) A~(y = 0) A(siny = 0) A(sin z = 0)].

In other cases, by introducing a new symbol we arrive at a system for which
the decision problem is open. This applies, for instance, to the system obtained by
introducing the operation of exponentiation (of course restricted to the cases where
it yields a definite real result), or — what amounts essentially to the same thing —
the symbol Exp to denote an exponential with a fixed base, for example, 2(2%)  The
decision problem for the system just mentioned is of a great theoretical and practical
interest. But its solution seems to present considerable difficulties. These diffi-
~culties appear, however, to be of a purely mathematical (not logical) nature: they
arise from the fact that our knowledge of conditions for the solvability of equations
and inequalities in the enlarged system is far from adequate (1) .

In this connection it may be worth while to mention that by introducing the
operation of exponentiation into the system of elementary complex algebra, we arrive
at a system for which the solution of the decision problem is negative. In fact it
is well known that the exponential function in the complex domain is periodic, and
hence, like the function sine in the real domain, it allows us to define the notion
of an 1integer.

45

L






NOTES

When dealing with theories presented as formal axiomatized systems, one often
uses the term "decision method" for a theory in a different sense, by referring
it to the class, not of all true sentences, but of all theorems of the theory:
i.e., of all sentences of the theory which can be derived from the axioms by
means of certain prescribed rules of inference.

See Léwenheim [11], Post [14], Langford [10], Presburger (15], and McKinsey
{12]. (The numbers in square brackets refer to items in the Bibliography fol-
lowing these Notes.) The results of Tarski and Mrs. Szmielew are unpublished.

See Godel [4], Church [3], and BRosser [16]. The results of Mostowski, Tarski,
and Mrs. Robinson are unpublished.

This result was mentioned, though in an implicit form and without proof, in
Tarski [19], pp.233 and 234; see also Tarski [22]. Some partial results tending
in the same direction — e.g., decision methods for elementary algebra with
addition as the only operation, and for the geometry of the straight line —
gre still older, and were obtained by Tarski and presented in his university
lectures in the years 1926-1928; cf. Presburger [15], p.95, footnote 4, and
Tarski [21], p.324, footnote 53.

In this connection A. Mostowski has pointed out the following. Although the
general concept of an integer 1is lacking in our system of elementary algebra,
yet it can easily be shown that a "general arithmetic" in the sense of Carnap
[2], p.206, is "contained” in this system. Since the language in question is
consistent and decidable (again in the sense of Carnap [2], pp.207 and 209),
it provides an example against Carnap’s assertion that "every consistent lan-
guage which contains a general arithmetic is irresoluble" (ibid., p.210). Carnap’s
definition of the phrase '"contains a general arithmetic" 1s therefore certainly
too wide.

Among the works listed in the Bibliography, Hilbert-Bernays [7] may be consulted
for various logical and metamathematical notions and results involved in our
discussion, and van der Waerden [23] will provide necessary information in
the domain of algebra. :

In this monograph we establish certain results concerning various mathematical
theories, such as elementary algebra and elementary geometry. Hence our dis-
cussion belongs to the general theory of mathematical theories: i.e., to what
is called "metamathematics". To give our discussion a precise form we have
to use various metamathematical symbols and notions. Since, however, we do
not want to create any special difficulties for the reader, we apply the fol-
lowing method: when referring to individual symbols of the mathematical theory
being discussed, or to expressions involving these symbols, we use the symbols
and expressions themselves. We could thus say that the symbols and expressions
play in our discussion the role of metamathematical constants. On the other
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hand, when referring to arbitrary symbols and expressions, or to arbitrary
expressions of a certain form, we use special metamathematical variables. In
fact, small Greek letters, as for instance "a", "B, ™", are used to represent
arbitrary terms, and in particular the letters "&", "n", "A", ul, ", will
be used to represent arbitrary variables; on the other hand, Greek capitals
"@', "6" "I"will be used to represent arbitrary formulas and sentences. With
these exceptions we do not introduce any special metamathematical symbolism.
Various metamathematical notions whose intuitive meaning is clear will be
used without any explanation; this applies, for instance, to such a phrase
as "the variable £ occurs in the formula @." Also, we do not consider it neces-
sary to set up an axiomatic foundation for our metamathematical discussion, and
we avoid a strictly formal exposition of metamathematical arguments. We assume
that we can avail ourselves in metamathematics of elementary number theory; we
use variables "m", "n", "p", and so on to represent arbitrary integers; and
we employ the ordinary notation for individual integers, arithmetical rela-
tions between integers, and operations on them.

The reader who is interested in the deductive foundations, and a precise de-
velopment, of metamathematical discussion, may be referred to Carnap [2] (part
IT, pp.55 ff.), Godel [4], Tarski [21] (Section 2, pp.279 ff., in particular
p.289), and Tarski [20] (especially p.100).

In choosing symbols for the formalized system of algebra, we have been interested
in presenting the metamathematical results in the simplest possible form. For

. this reason we have not introduced into the system various mathematical and

logical symbols which are ordinarily used in expressing mathematical theorems:
such as the subtraction symbol "-", the symbol "<", the implication sign "~
the equivalence sign "e=", and the universal quantifier "A". Nevertheless, some
of these symbols are made available for our use, since they are introduced
as metamathematical abbreviations. If we wished, we could reduce the number
of symbols still further; we could, for instance, dispe.se with the ">" sign,
by treating .
x>y

merely as an abbreviation for
(Ez)[’”(z Z0)A(x =y + z"’)] .

In an analogous way we could dispense with the symbols 0, 1, and -1, and with
one of the two logical connectives V and A. But such a reduction in the number
of symbols would hardly be advantageous from our point of view.

It should be pointed out that, in order to increase the efficiency of the
decision machine which may be constructed on the basis of this monograph, it
might very well turn out to be useful to enrich the symbolism of our system,
even if this carried with it certain complications in the description of the
decision method.

A formal definition of truth can be found in Tarski [21]. It should be pointed
out that we can eliminate the notion of truth from our whole discussion by
subjecting the system of elementary algebra to the process of axiomatiza-
tion. For this purpose, we single out certain sentences of our system which



we call "axioms". They are divided into logical and algebraic axioms. The
logical axioms (or rather, axiom schemata) are those of the sentential calculus
and the lower predicate calculus with identity; they can be found, for in-
stance, in Hilbert-Bernays [7] (see sections 3, 4 and 5 in vol.1, and supplement
1 in vol.?2). Among algebraic axioms we find, in the first place, those which
characterize the set of real numbers as a commutative ordered field with the
operations + and * and the relation >, and which single out in a familiar way
the three special elements 0, 1, and -1. These axioms are supplemented by
one additional axiom schema comprehending all sentences of the form

(i) (Aél)...(Aén)(An)(Ag){ [(n > 1) AEE) (6 = ) Ala>0)) A

(Eé)((éf L)/\(0>a))] ——(Eg)((n SE)N(E>L) Aa = 0))} .

where & ,..., én, 7, { are arbitrary variables, £ is any variable different
from 1 and {, and @ is any term — which, in the non-trivial cases, of course
involves the variable £. Intuitively speaking, this axiom schema expresses
the fact that every function which is represented by a term of our symbolism
(i.e., every rational integral function) and which is positive at one point

and negative at another, vanishes at some point in between.

From what can be found in the literature (see van der Waerden [23], in par-
ticular pp. 235 f.), it is seen that this axiom schema can be equivalently
replaced by the combination of an axiom expressing the fact that every positive
number has a square root, with an axiom schema comprehending all sentences
to the effect that every polynomial of odd degree has a zero: i.e., all sen-
tences of the form

(ii) (‘4770)('4771)‘ : ‘(Anzn'rl) I:N (77211+1 = 0) _.(Eé:) (770+ 7715 *.. '+T’2n+1 éznﬂ - O)] ’

where 7, 7,,..., M4, aTE arbitrary variables, and £ is any variable different
from all of them. It is also possible to use, instead of (ii), a schema com-
prehending all sentences to the effect that every polynomial of degree at
least three has a quadratic factor. Finally, it turns out to be possible to
replace equivalently schema (i) by the seemingly much stronger axiom schema
comprehending all those particular cases of the continuity axiom which can
be expressed in our symbolism. (By the continuity axiom we may understand
the statement that every set of real numbers which is bounded above has a
least upper bound; when expressing particular cases of this axiom in our sym-
bolism, we speak, not of elements of a set, but of numbers satisfying a given
formula.) The possibility of this last replacement, however, is a rather deep
result, which is a by-product of other results presented in this work: in
fact, of those discussed below in Note 15.

After having selected the axioms, we describe the operations by means of which
new sentences can be derived from given ones. These operations are expressed
in the so-called "rules of inference" familiar from mathematical logic. A
sentence which can be derived from axioms by repeated applications of the
rules of inference is called a provable sentence. In our further discussion
— in particular, in defining the notions of equivalence of terms and equiva-
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lence of formulas — we replace everywhere the notion of a true sentence by
that of a provable one. Hence, when establishing certain of the results given
later — in particular, the theorems about equivalent formulas — we have to
show that the sentences involved are formally derivable from the selected
axioms (and not that they are true in any intuitive sense); otherwise the
discussion does not differ from that in the text.

We use the term "decision method” here in an intuitive sense, without giving
a formal definition. Such a procedure is possible because our result is of
a positive character: we are actually going to establish a decision method, and
no one who understands our discussion will be likely to have any doubt that
this method enables us to decide in a finite number of steps whether any given
sentence of elementary algebra is true. The situation changes radically, however
if one intends to obtain a result of a negative character — i.e., to show
for a given theory that no decision method can be found; a precise definition
of a decision method then becomes indispensable. The way in which such a defi-
nition is to be given is of course known from the contemporary literature. Using
one of the familiar methods — for instance the method due to Godel = one
establishes a one-to-one correspondence between expressions of the system and
positive integers, and one agrees to treat the phrase "there exists a decision
method for the class A of expressions” as equivalent with the phrase "the set
of numbers correlated with the expressions of A is general recursive." (When
the set of numbers correlated with a class A of sentences is general recur-
sive, we sometimes say simply that A is general recursive.) For a discussion
of the notion of general recursiveness, see Hilbert-Bernays [7] and Kleene [8].

The method of eliminating quantifiers occurs in a more or less explicit form
in the papers Lowenheim [11] (section 3), Skolem [18] (section 4), Langford
[10], and Presburger [15]. In Tarski’s university lectures for the years 1926-
1928 this method was developed in a general and systematic way; cf. Presburger
[15], p.95, footnote 4, and p.97, footnote 1.

The results obtained in Theorems 27 and 29, and culminating in Theorem 31, seem
to deserve interest even from the purely mathematical point of view. They are
closely related to the well-known theorem of Sturm, and in proving them we
have partly used Sturm’s methods.

The theorem most closely related to Sturm’'s ideas is Theorem 27. In fact, by
analyzing, and slightly generalizing, the proof of this theorem we arrive at
the following formulation. Let a and 8 be any two polynomials in a variable
£, and « and p any two real numbers with « < u. We construct a sequence of
polynomials 71,'72,..” Yo — which may be called the Sturm chain for a and
£ — by taking a for Yy B for ¥,» and assuming that ., with © > 2, is the
negative remainder of Yi-2 and Vi-yi W discontinue the construction when we
reach a polynomial Yn which is a divisor of Vp—1- Let Kyveses Ko and Hyreeos 1
be the sequences of values of Yyrerer ¥, at € = k and & = i, respectively; let
k be the number of changes in sign of the sequence Kyseees K, and let m be
the number of changes in sign of the sequence i ,..., x4 . Then it turns out
that k-m is just- the number g(a,B) defined as in the proof of Theorem 27, but
with the roots assumed to lie between « and u. (In Theorem 27 we were dealing,
not with the arbitrary interval («,uz), but with the interval (-®, +®) )



(i)

(11)

Sturm himself considered two particular cases of this general theorem: the .
case where B is the derivative of @ — when the number k-m proves to be simply
the number of distinct roots of @ in the interval («,u); and the case where
B is arbitrary but a is a polynomial without multiple roots — when k-m proves
to be the difference between the number of roots of a at which B agrees in
sign with the derivative of @, and the number of roots of a at which B dis-
agrees in sign with the derivative of a — the roots being taken from the
interval (x,u). These two special cases easily follow from the theorem, and
we have made an essential use of this fact in the proof of Theorem 29. The general
formulation was found recently by J.C.C. McKinsey; it contributed to a simpli-
fication, not of the original decision method itself, but of its mathematical
description.

Apart, however, from technicalities connected with the notion and construction
of Sturm chains, the mathematical content of Sturm’s theorem essentially con-
sists in the following: given any algebraic equation in one variable x, and
with the coefficients ag, @ ,e., Qp, there is an elementary criterion for
this equation to have exactly k real solutions (which may be in addition sub-
jected to the condition that they lie in a given interval): such a criterion
is obtained by constructing a certain finite sequence of systems, each consisting
of finitely many equations and inequalities which involve the coefficients
a, a,...,a of the given equation (and possibly the end-points b and ¢ of
the interval); it is shown that the equation has exactly k roots if and only
if its coefficients satisfy all the equations and inequalities of at least
one of these systems. (When applied to an equation with constant coefficients, the
criterion enables us actually to determine the number of roots of the equa-
tion, but this is only a by-product of Sturm’s theorem.) By applying Sturm's
theorem we obtain in particular an elementary condition for an algebraic equation
in one unknown to have at least one real solution. Theorem 31 gives directly
an extension of this special result to an arbitrary system of algebraic equa-
tions and inequalities with arbitrarily many unknowns. It is easily seen, however,
that from our theorem one can obtain stronger consequences: in fact, criteria
for such systems to have exactly k real solutions. To clear up this point, let
us consider the simple case of asystem consisting of one equation in two unknowns

F(x,y) =0 .

We form the following system of equations and inequalities

F(x,y) =0

F(z',y) =0

(x = x)2+(y - ¥')2>0 .
By Theorem 31 we have an elementary criterion for the system (ii) to have at
least one solution. But it is obvious that this criterion is at the same time
a criterion for (i) to have at least two solutions. In the same way, we can obtain
criteria for (i) to have at least 3,4,..., k real solutions. Hence we also

obtain a criterion for (i) to have exactly k solutions (since an equation has
exactly k solutions if it has at least k, but not at least k + 1, solutions).
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The situation does not change if the solutions are required to satisfy addi-
tional conditions — namely, to lie within given bounds. We can thus say that
Theorem 31 constitutes an extension of Sturm’s theorem (or, at least, of the
essential part of this theorem) to arbitrary systems of equations and inequal-
ities with arbitrarily many unknouwns.

It may be noticed that by Sturm’s theorem a criterion for solvability (in
the real domain) involves systems which contain inequalities as well as equa-
tions. Hence, to obtain an extension of this theorem to systems of equations
in many unknowns, it seemed advisable to consider inequalities from the begin-
ning, and in the first step to extend the theorem to arbitrary systems of
equations and inequalities in one unknown. As a result of this preliminary
extension, the subsequent induction with respect to the number of unknowns
becomes almost trivial.

In its most general form the mathematical result obtained above seems to be
new, although, in view of the extent of the literature involved, we have not
been able to establish this fact with absolute certainty. At any rate some
precedents are known in the literature. From what can be found in Sturm’s
original paper, the extension of his result to the case of one equation and
one inequality with one unknown can easily be obtained; Kronecker, 1in his
theory of characteristics, concerned himself with the case of n (independent)
equations with n unknowns. It seems, on the other hand, that such a simple
problem as that of finding an elementary criterion for the solvability in
the real domain of one equation in two unknowns has not been previously treated;
the same applies to the case of a system of inequalities (without equations)
in one unknown — although this case is essential for the subsequent induc-
tion. (Cf. in this connection, Weber [24], pp.271 ff., and Runge (17], pp.416
ff., where further references to the literature are also given.)

The result established in Theorem 31 and discussed in t.e preceding note has
various interesting consequences. To formulate them, we can use, for instance,
a geometric language and refer the result to n-dimensional analytic space
with real coordinates — or, what is slightly more convenient, to the infinite-
dimensional space S, in which, however, every point has only finitely many
coordinates different from zero. By an elementary algebraic domain in S, we
understand the set of all points < X, X, xn,...> in which the coor-
dinates Xpr Zpgreeer Xy, satisfy a given algebraic equation or inequality

F(’k,""' 11-) =0

F(’hl""' xk.) >0 ,

or

and the remaining coordinates are zeros. Let J be the smallest family of
point sets in S which contains among its elements all elementary algebraic
domains and is closed under the operations of finite set-addition, finite
set-multiplication, set-complementation, and projection parallel to any axis.
(The projection of a set A parallel to the n*" axis is the set obtained by
replacing by zero the n*" coordinate of every point of A.) Now Theorem 31 in
geometric formulation implies that the family J consists of those and only
those sets in S_ which are finite sums of finite products of elementary alge-
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braic domains. The possibility of passing from the original formulation to
the new one is a consequence of the known relations between projection and
existential quantifiers.

Theorem 31 has also some implications concerning the notion of arithmetical
(or elementary) definability. A set Aof real numbers is called arithmeti-
cally definable if there is a formula ¢ in our system containing one free
variable and such that A consists of just those numbers which satisfy ¢. In
a similar way we define an arithmetically definable binary, ternary, and in
general an n-ary, relation between real numbers. Now Theorem 31 gives us a
simple characterization of those sets of real numbers, and relations between
real numbers, which are arithmetically definable. We see, for instance, that
a set of real numbers is arithmetically definable if and only if it is a set-
theoretical sum of a finite number of intervals (bounded, or unbounded; closed,
open, or half-closed, half-open) with algebraic end-points; in particular, a
real number (i.e., the set consisting of this number alone) is arithmetically
definable 1f and only if it is algebraic. Hence it follows that an arithmeti-
cally definable set of real numbers which is bounded above has an arithmetically
definable least upper bound — a consequence which is relevant in connection
with a result mentioned near the end of Note 9. As further consequences we
conclude that the sets of all integers, of all rationals, etc., are not arith-
metically definable, which justifies some remarks made in the Introduction.

As a simple corollary of Theorem 31 we obtain: For every formulathere is
an equivalent formula J with the same free variables of the following form:

g = (E¢,)...(E¢,)[a = 0] .

This corollary can also be interpreted geometrically.
For the notions used in this note, cf. Tarski [19] and Kuratowski-Tarski [9].

In other words, using terminology introduced in Note 10, we state that the
number-theoretic function correlated with WU is general recursive. Actually
this function is easily seen to be a general recursive function of a very
simple type — what is called a "primitive" recursive function.

If we take the axiomatic point of view outlined in Note 9 and replace in our
whole discussion the notion of truth by that of provability, then the meaning
and extent of the fundamental results obtained in Section 2 undergo some essen-
tial changes. In the new interpretation, Theorem 36 implies that every sentence
of elementary algebra is provably equivalent to one of the sentences 0 = 0 or
0 = 1. In addition, we can easily show that WU(¢) = (0 = 0) if and only if
W(~&) = (0 = 1), and that for any provable sentence & we have WU(F) = (0 = 0).
By combining these results, we arrive at the conclusion that the axiomatic
system of elementary algebra is consistent and complete, in the sense that one
and only one of any pair ¢ and ~ & of contradictory sentences is provable. The
proof of this fact has what is called a constructive character. The completeness
of the system implies by itself the existence of a decisionmethod for theclass
of all provable sentences (even without the knowledge that the number-theoretical
function correlated with WU is general recursive); cf. Kleene [8].

53



16.

54

We further notice that all the axioms listed in Note 9 are satisfied, not

only by real numbers, but by the elements of any real closed field in the sense-
of Artin and Schreier (cf. van der Waerden [23}, chapter IX). Thusall the results

Just mentioned can be extended to the elementary theory of real closed fields.

From the fact that this theory is complete it follows that there is no sentence

expressible in our formal system of elementary algebra which would hold in one
real closed field and fail in another. In other words, any arithmetically de-

finable property (in the sense of Note 13) which applies to one real closed
field also applies to all other such fields: i.e., any two real closed fields

are arithmetically indistinguishable,

In general, when applied to axiomatized theories, the notions of truth and
provability do not have the same extension. Usually it can be shown only that
every provable sentence is true. Since, however, in the case of elementary
algebra the class of provable sentences turns out to be complete, we conclude
that in this particular case the converse holds, and hence that the two classes
coincide. Thus in the case of elementary algebra three equivalent definitions
of a true sentence are available: (i) the definition of a true sentence as a
sentence @ such that WU(F) = (0 = 0); (ii) the definition of a true sentence
as a provable sentence; (iii) the definition based on the general method of
defining truth developed in Tarski [21]. Correspondingly, when starting to
develop elementary algebra, we have three methods of stipulating which sen-
tences will be accepted in this algebra — 1.e., recognized as true. Apart
from any educational and psychological considerations, the first method has
in principle a great advantage: it implies directly that the class of sentences
recognized as true is general recursive. Hence it provides us from the begin-
ning with a mechanical device to decide in each particular case whether a
sentence should be accepted, and serves as a basis for the construction of
a decision machine. The second method — which is the usual axiomatic method
— 1is less advantageous: it has as a direct consequence only the fact that
the class of sentences recognized as true is what is czlled recursively enu-
merable (not necessarily general recursive). It leads to the construction of
a machine which would be much less useful — to a machine which would con-
struct, so to speak, blindly, the infinite sequence of all sentences accepted
as true, without being able to tell in advance whether a given sentence would
ever appear in this sequence. The third method, though very important for
certain theoretical considerations, is even less advantageous than the second. It
does not show that the class of accepted sentences is recursively enumerable; it
can hardly be applied to a practical construction of a theory unless 1t is
combined on a metamathematical level with the first or the second method.
It goes without saying that in the particular case with which we are con-
cerned — that is, in the case of elementary algebra — by establishing the
equivalence of these possible definitions of truth we have €o ipso shown that
in this case the three methods determine eventually the same class of sentences,

We can also consider a more restricted elementary system of complexalgebra,
from which the symbols > and Rl have been eliminated. The decision method
applies to such a system as well, and even becomes much simpler. By taking
the axiomatic point of view and basing the discussion on the notion of prov-
ability, we can carry over to this restricted system of complex algebra all
the results pointed out in Note 15. Since the axioms of this system prove to



be satisfied by elements of an arbitrary algebraic closed field with charac-
teristic zero (thus, in particular, by the complex algebraic numbers), the
results apply to the general elementary theory of such fields; in particular,
any two algebraic closed fields with characteristic zero turn out to be arith-
metically indistinguishable. A slight change in the argument permits us further
to extend the results just mentioned to algebraic closed fields with any given
characteristic p. (For these notions, cf. van der Waerden [23], chapter 5.)

On the other hand, as was mentioned in the Introduction, no decision method
can be given for the arithmetic of rationals, nor for the elementary theory
of arbitrary fields. For most special fields the decision problem still remains
open. This applies, for instance, to finite algebraic extensions of the field
of rational numbers and to the field of all numbers expressible by means of
radicals. It would be interesting to solve the decision problem for some
of these special fields, or even to obtain a simple mathematical characteri-
zation of all those fields for which the solution of the decision problem
1s positive.

17. As 1in the case of elementary algebra (see Note 8), some of the symbols listed
could be eliminated from the system of elementary geometry and treated merely
as abbreviations. It is known, for example, that in n-dimensional geometry
with n > 2 the symbol "B" of the betweenness relation can be defined in terms
of the symbol "D" of the equidistance relation.

18. Exactly as in the case of elementary algebra, we can treat the system of
elementary geometry in an axiomatic way, and base our discussion of the decision
problem on the notion of provability. If we restrict ourselves to the case
of two dimensions, we can take, for instance (in addition to the general logical
axioms mentioned in Note 9), the following geometrical axioms:

(1) (Ax) (Ay)B(x,y,y) :
(ii)  (Ax)(4y) [B(x,y,2) —(x = »] ;
(iii)  (Ax)(4y)(A2)[B(x,y,2) —=B(z,y,0)] ;
(iv) (Ax)(Ay) (Az) (Au) B(x,y,u)/\B(y,z,u)] —»B(z,y,z)} ;

(vi) (Ax) (Ay) (Az) (Au)

(v) (Az)(Ay)(Az)(Au){[B(x,y,z)/\B(y,z.u)/\'v(y . z)]——s(x,y,u)} ,

[B(x,y,u)/\B(x,z,u)] -—*[B(x,y,z) VB(x,z,y)]};
[

(vii) (Az) (Ay) (A2) (Aw) ! [B(x,y, D) AB(x,y, W) A~ (x = )] —=

[B(x,z,u)\/B(x,u,z)]} ;

(viii)  (Ex)(Ey)(E2) [~B(x,y,2) A~ Bly,z,%) A~ B(z,5,0)] ;

(ix) (Ax)(Ay)(Az)(Az')(Au){[B(x, z', z) A B(y, z,u)]—-»

(Ey')[B(x,y',y) A B(y',z’,u)]} ;
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(x)

(xi)

(xii)

(xi1ii)

(xiv)

(xv)

(xvi)

(xvii)

(xviii)

(Ax)(Ay)(Az)(Az')(Au){[B(x,z,z')/\B(y,z,u)/\w(x = 9] —
(Ey')(Eu’)[B(x,y,y')/\B(x,u,u')/\B(y', z', u'):l};
(Ax)(Ay)(Az)(Au)(Ev){[(B(x,u,v)VB(u,v,x)VB(v,x,u))/\B(y,v,z ] v

[(B(y,u,v)V B(u,v,y) VB(v,y,u) )AB( z,v,x)] Y

S

[(BCz,2,0)V B(u,v,2)V Bv, 2,u)) AB(x,v,5)]
(Az)(Ay) D(z,y;y,x)
(4x) (4y) (42) [D(x,yi 2, 2) —=(x = y)] |
(Ax)(Ay)(Az)(Au)(Av)(Aw){[D(z,y;z,u)/\D(x,y;v,w)]——’D(z,u;v,w)} ;
(40) () (A2 (42 ) { [~ (x = ) ADGx 33, 29N D, 233,20
B(y,u,z')A(B(x,u,z)va(x,z,u))]—»(z = z')} ;
(Ax) (AxWAy)(Ay")(Az)(Az")(Au){4u') { [D( %,y 2 yIANDy, z;y', 2) A
Dix,u; 2',u) A D(y,u; y",u’) A
B(x,y, 2)AB(x'y', 2') A
~(x = y) Ay = z)] ~—>D(Z,U;Z’,u’)}' ;
(Ax) (Ay)(Ay')(Az')(Ez){B(x,y, 2) A D(y, z;y’, z')} ;
(Ax)(Ax")(Ay) (Ay") (Az')(Av){D(x,y;x',y') —
(E2) (Bu) [D(x, 2;x', 20 A Dy, 235", #) A Bz, 1, 0) A

(B(x,y,u) vB(y,u,x)VB(u,z,y) )J } .

To these is added the axiom schema which comprehends all particular cases of
the axiom of continuity (e.g., in the Dedekind form) that are expressible
i1n our system: i.e., all sentences of the following form:

(xix)

(42,) - (A€ ) B (A, ) (4, )@ A ) —=B (w0 m,) ] =
(Ep) (A7, ) (An,) [(& A ) —=B(ny1e0m, )]}

where neither y nor 7, is free in the formula ¢, and neither u nor 7, 1s free
in the formula .

The reader will notice the formal simplicity of most of the axioms just given—
which we have tried to put into evidence by avoiding (contrary to the prevailing
custom) the use of any defined terms in formulating the axioms. On the other
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19.

20.

21.

hand, however, the reader will easily recognize a close similarity between
our axiom system and various systems which can be found in the comprehensive
literature of the foundations of geometry; see, e.g., Hilbert f6].

By means of some obvious changes in (viii) and (xi) one can obtain from this
axiom system a system of axioms for elementary geometry of any number of
dimensions.

Again as in the case of algebra, one of the achievements attained by the axio-
matic treatment of the subject is a constructive consistency proof for the
whole of elementary geometry. This improves a result to be found in Hilbert-
Bernays [7] (vol.2, pp.38 ff.). It may also be mentioned that in Hilbert [6]
(section 35, pp. 96-98) a result is given which is closely connected with the
decision method for elementary geometry, but which has a rather restricted

character.

As is known, ordinary projective geometry can be treated as a specialized
branch of lattice theory — more specifically, of the theory of modular lat-
tices: see Birkhoff [1], where references to earlier papers of Menger can also
be found. The decision method applies to this branch of the theory of modular
lattices as well.

In the axiomatic presentation, the introduction of the new symbol Exp would
require the addition of new axioms. The following three axioms can be used,
for instance, for this purpose:

(Ax)(Ay)[(x> y) —=(Exp(x)> Exp(y))]
(Ax) (Ay) [(Exp(2)-Exp(y)) = Exp(x + )

Exp(1l) =1 + 1.

Similar decision problems arise if we introduce into our system of elementary
algebra the symbol Al to denote the property of being an algebraic number, or
the symbol Cn to denote the property of being a constructible number (i.e., a
number which can be obtained from the number 1 by means of the rational opera-
tions, together with the operation of extracting square roots). If the solution
of the decision problem for elementary algebra with the addition of the symbol
Cn were positive, this result would have an interesting application for geometry:
in fact, we should obtain a decision method which would enable us, not only
to decide on the truth of every sentence of elementary geometry, but also — in
the case of existential sentences (like the sentence stating the possibility
of trisecting an arbitrary angle) — to decide whether the truth of such a
sentence can be established using only the so-called elementary construc-
tions: i.e., constructions by means of rule and compass. It seems unlikely,
however, that the solution of the problem in question is indeed positive;
probably we shall be able to show that such a sharper decision method for
elementary geometry cannot be found.
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SUPPLEMENTARY NOTES

1. The references to decision methods previously established given on p. 1 and in
Note 2, p. 47, were not intended to be complete. For some further results and addi-
tional references compare the series of abstracts by Mostowski, Mrs. Szmielew, and
Tarski in the Bulletin of the American Mathematical Society, vol. 55, pp. 63-66 and
1192, 1949, as well as the following papers:

Gentzen, G., "Untersuchungen iiber das logische Schliessen". Mathematische
Zeitschrift, vol. 39, pp. 176-210, 1934,

McKinsey, J. C. C., "A solution of the decision problem for the Lewis
systems S2 and S4, with an application to topology". Journael of symbolic
logic, vol. 6, pp. 117-134, 1941.

McKinsey, J. C. C., and Tarski, A., "The algebra of topology". Annals of
mathematics, vol. 45, pp. 141-191, 1944,

Skolem, T., Uber einige Satzfunktionen in der Arithmetik. [Skrifter utgitt
av det Norske Videnskaps-Akademi iOslo, I. klasse 1930, no. 7.] Oslo, 1931.
Szmielew, W., "Decision problem in group theory". Proceedings of the Tenth
International Congress of Philosophy, fasc. 2, pp. 763-766, Amsterdam,
1549,

2. The results of Mrs. Robinson, Mostowski, and the author mentioned in the first
paragraph of p. 2 appeared in print (some only in outline form) after the first
edition of this monograph. See the series of abstracts in the Journal of symbolic
logic, vol. 14, pp. 75-78, 1949, as well as the article:
Robinson, J., "Definability and decision problems in arithmetic' Journal
of symbolic logic, vol. 14, pp. 98-114, 1949.
Some related results can be found in the article:
Robinson, R. M., "Undecidable rings". Transactions of the American Mathe-
matical Society, vol. 70, pp. 137-159, 1951,

3. The following remarks refer to the discussion on pp. 4 and 5. Many examples of
open problems in elementary algebra and geometry are known; one comes across discus-
sions of such problems by looking through any issue of the American mathematical
monthly, However, the problem of describing the behavior of the function d does not
seem to have been previously treated in the literature. For a discussion of a related
problem — involving the decomposition of P and Q, not in triangles, but in arbitrary
polygons — see the following article (where references to earlier papers of Moese and
the author can also be found):

Tafski, A., "Uwagi o stopniu réwnowaznodci wielokatow". (Remarks on the
degree of equivalence of polygons, in Polish.) Parametr, vol. 2, 1932.

It may be interesting to mention that some conclusions toncerning the function d
can be derived from the general results stated in Note 13, p. 53. In fact, it can be
shown that every bounded interval (a, b) can be divided into finitely many subintervals
such that the function d 1s constant within each of these subintervals; all the end-
points of these subintervals are algebraic, with the possible exception of a and b.
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4. The statement in Note 12, p. 52, to the effect that the case of a system of in-
equalities in one unknown was not previously treated in the literature, seems to be
correct when applied to the situation which existed at the time when the results of
this work were found and first mentioned in print (1931), as well as for many years
thereafter. However, the author’s attention has been called to the fact that this
case has recently been treated in the paper:

Meserve, B. E., "Inequalities of higher degree in one unknown". American

journal of mathematics, vol. 49, pp. 357-370, 1947.

5. The discussion in Note 13, pp. 52-53, may convey the impression that the notions
considered in the first paragraph have but little in common with those considered in
the second paragraph. Actually, these notions are very closely related to each other.
In fact, if the notion of arithmetical definability is applied to arbitrary sets of
sequences of real numbers, i.e., to point sets in S , then the family of all arith-
metically definable point sets simply coincides with the family I.

6. It was stated in Note 13, p. 53, that every real number which is arithmetically
definable 1s algebraic. An interesting application of this result to the theory of
games has recently been found by O. Gross and is discussed in his paper "On certain
games with transcendental values" (to appear in the American mathematical monthly).

7. As was pointed out in Note 15, p. 54, the completeness theorem for elementary
algebra leads to the following result: every arithmetically definable property which
applies to one real closed field also applies to all other such fields. It 1s impor-
tant to realize that the result just mentioned extends to a comprehensive class of
properties which are not arithmetically definable (i.e., which are not expressible
in our formal system of elementary algebra). This class includes in particular all
the properties expressed by sentences of the form (Am)im, (Am)(En)ﬁ_Z}ml ne
where m,n, . . . are variables assumed to range over all positive integers and where
b, @m)n, . . .are formulas which involve m,n, . . . (as free variables) and which,
for any particular values of m,n, . . ., are equivalent in any real closed fields to
sentences of elementary algebra. In fact, consider a sentence of this kind, say,
(Am)@m. I1f this sentence holds in a given real closed field, the same obviously
applies to all the particular sentences of the form @m, 1.e., to 1 5
&, - Each of these particular sentences is equivalent to a sentence of ele-
mentary algebra and hence, by the result discussed, it holds in every real closed
“field. Consequently, the universal sentence (Am) i; also holds in every real closed
field. Various theorems of these types are known which were originally established
for the field of real numbers using essentially the continuity of this field (some-
times with the help of difficult topological methods) and whose extension to arbitrary
real closed fields presented a new and difficult problem; in view of our general
result such an extension now becomes automatic. As examples the following three
theorems may be mentioned.

I. Let R be an m-dimensional region defined as the set of all points <}o' x,,
. xm_1:>satisfying a finite system of tnequalities Pi(xo' X xm_l) >0
vhere the P 's for 1 = 0,1, ..., n-1 are polynomials of degree at most p; let F be a
rational function whose denominator does not vanish on R. Then there 1s a positive
integer q (dependent exclusively on m, n, end p) such that the set S of all function
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values of F on R is a sum of at most g closed intervals; tf R is bounded, then all
these intervals are also bounded, and hence F reaches a maximum and mintmum on R.

II.  For every system of m polynomials Py, P, ..., P, in m variables there
are real numbers ¢ > 0, x , x x such that P.(x , x., ..., x ) = ¢ - x

m-1 i ™1 n-1 i

fori=0,1,..., m—-1

II1. Every commutative division algebra — whether associative or not — over the
field of real numbers is of order 1 or 2; if it has a unit, it coincides either with
the field of reql numbers or with the algebraic closure of this field (i.e., with the
field of complex numbers).

PR

While I is simply a particular case of a familiar theorem concerning continuous
functions, and the same applies to the "eigenvalue theorem" II, Theorem III has a
specifically algebraic character; it was proved, with the help of topology, in the
article:

Hopf, H., "Systeme symmetrischer Bilinearformen und euklidische Modelle der
projectiven Raume". Vierteljahrsschrift der Naturforschenden Gesellschaft
in Ziirich, vol. 85, supplement No. 32, pp. 165-177, 1940.

1he research to extend these and similar results, obtained by means of topolo-
gical methods, to arbitrary real closed fields was initiated by H. Hopf. Compare the
following papers where partial results in this direction (in particular, extensions
of some special cases of Theorem I) have been achieved directly, without the help of
our general method:

Behrend, F., "Uber Systeme algebraischer Gleichungen". Compositio mathema-
tica, vol. 7, pp. 1-19, 1939,

Habicht, W., "Ein Existenzsatz uber reelle definite Polynome". Commentarii
mathematici helvetici, vol. 18, pp. 331-348, 1946.

Habicht, W.,"Uber die Losbarkeit gewisser algebraischer Gleichungs-
systeme". Commentarii mathematici helvetici, vol. 18, pp. 154-175,
1946.

Kaplansky, I., "Polynomials in topological fields". Bulletin of the
American Mathematical Society, vol. 54, pp. 909-916, 1948.

8. In view of the results stated in Note 16, pp. 54-55, the remarks made in the
preceding note will still hold if, instead of real closed fields, we consider the
class of algebraically closed fields with a given characteristic.
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