Sockets

101

Networked IPC

The Socket interface

Designed by BSD, and incorporated into UNIX in the
early 80s.

Ported to windows (winsock.dll)
A Socket is defined as an endpoint for communication.

Sockets may be stream (TCP), datagram (UDP), raw
(RAW), local (UNIX Domain).

Socket data is available by the netstat command.

102

Socket Programming
Server side TCP socket handling

socket()

bind()

|

listen()

,,,,,,,,,,,,,,,, }

accept()

|

il

read/recv
write/send

I

close()

The TCP Server must complete several
preparatory steps, prior to establishing
connections. These steps involve setting
up the socket, binding the local address,
and preparing to accept connections.

Each incoming connection request may
then be accepted. Data may be readily
read or written to the socket. Finally,
when no more data is available, the
socket may be closed.

103

Socket Programming

Client side socket handling

The TCP Client is exempt from the
lengthy setup procedure. All that is
required is the socket creation, followed
by a connection attempt to the remote
host (although a specific bind may be
requested).

If the connection request is accepted,
data may flow freely, until the connection
is closed.

socket()

|

connect()

|

t]

read/recv
write/send

|

close()

104

Socket Programming

Client/Server interaction in TCP

socket()

bind()

listen() socket()

1 The Client connect() call prompts the ~

server to accept()
accept() — ———— | connect(

\ Data sent by client is recv'd by server.. 1

read/recv >—< readirecy
write/send

write/send ...and vice versa..

I |

close() S —» close()

gOf

105

Socket Programming — API Calls

Socket creation

socket() #include <sys/socket.h>
int socket (int family, *PF_INET or PF_INET6 */
int type, * SOCK_DGRAM, STREAM or RAW */
bind() int protocol); /*usually 0%
Description: Create the socket FD.
Parameters: R e
listen() _ rotocol Family urpose
family - PF_UNIX Local IPC
PF_INET IPv4 protocols
accept() PF_INET6 IPv6 Protocols
Socket Type Purpose (PF_INET
read/recv type — iE pose { =)
write/send SOCK_STREAM TCP Connections
SOCK_DGRAM UDP Connections
SOCK_RAW Raw input over IP
close()
L | Return: Socket (>0) . -1 (SOCKET_ERROR) on failure.

The socket() system call is used to create the local endpoint for communications. The socket
may be associated with any one of the myriad address or protocol families. (Some UNIXes go
with the AF_xxx constants — others (e.g. Linux) use PF_xxx). Both are defined to be equal.

Once a family is specified, a type must be selected. The types are defined as per the
communication semantics required. That is:

SOCK_STREAM: Reliable, two way, connection based byte stream. For IP type sockets, this
is usually TCP.

SOCK_DGRAM: Unreliable and connectionless per-packet datagram delivery (For IP: UDP)

SOCK_RAW: Unspecified Layer Ill and Layer IV protocols : Sender must construct IP and
above headers.

SOCK_RAW is usually used in programs that need to construct ICMP packets, and/or in
network sniffers.

The protocol field may usually be left at 0, but a specific protocol may be requested using
getprotoent().

106

Socket Programming — API Calls

Socket address binding

socket() — #include <sys/socket.h>
I int bind (int socket, I~ as returned by socket() */
| const struct sockaddr *lecal, /*localaddress to bind*
bind() || socklen_t addrlen); 1* sizeof (struct sockaddr) */
| Description: Given a socket, assign and bind a local
address, as specified in the sockaddr structure.
listen()
I Paramaters: A generic sockaddr structure, by reference,
Prepared for the socket address family, then typecast.
accept() Y CAVEAT: Privileged (<1024) ports require UID 0!
| Struct sockaddr_in
{ /* IPv4 address struct */
read/recv uint8_t sin_len; /* sizeof (struct..) */
write/send sa_family_t sin_family; /* AF_INET */
in_port_t sin_port; /* htons(port_number) */
I struct in_addr sin_addr; /* use INADDR_ANY */
char zero[8]; /* must be ‘\0’’ed */
close() }
L | Return: 0. or-1 (SOCKET_ERROR) on failure.

Once the socket has been successfully created, the next step is to bind it to some local
address. This readies the local port, and associates it with the applications. This step is NOT
required for a client, but is mandatory for a server.

Initializing the sockaddr struct:

int server_port= 2410 ; /* or any port you wish... */
int socket_descriptor = socket(AF_INET, SOCK_STREAM,0)
struct sockaddr_in local;

memset(&local, ‘\0’, sizeof(local));

local.sin_family = AF_INET;

local.sin_addr.s_addr = htonl (INADDR_ANY) /* Use any interface */
local.sin_port = htonl(server_port);

bind (socket_descriptor, (struct sockaddr *) &local, sizeof(local));

Unless explicitly requested otherwise, only one application may bind to a specific port at any
given time. It is thus always important to check bind’s return value. If it is -1, check errno.

EADDRINUSE: “Address already in use” — someone else got to bind the socket first.
EBADF/ENOTSOCKET: “Bad file descriptor”/”not a socket” — The 1%t parameter was not
created with a call to socket()

EINVAL: Socket is already bound.

107

Socket Programming — API Calls

Placing the socket in Listening mode

socket() — #include <sys/socket.h>
I int Tisten (int socket, [* as returned by socket() */
| int backlog); * accept queue length */
bind()

| Description: Change the socket from an one active to a
passive one, and state how many connections may be
listen() [queued by the kernel.

| This function changes the socket status from CLOSED
to LISTENING, and effectively opens the TCP port. The

accept() function call is only useful with STREAM sockets.
l Return: 0. or-1 (SOCKET_ERROR) on failure.
read/recv
write/send
close()

It is important to set the backlog parameter to a correct value. If the backlog limit of
connection requests is met, and none is processed (by accept()), any further connection
request will be refused (TCP RST) by the server.

108

Socket Programming — API Calls

Accepting connections

socket() — #include <sys/socket.h>
I int accept (int socket, [* as returned by socket() */
| struct sockaddr *peeraddr, /*peeraddress */
socklen_t *addrlen); rfin/out(!) sizeof(sockaddr) */
bind()
| Description: Accept a connection (complete TCP 3-way
i handshake), and open socket for bilateral data flow
listen()
I Parameters: A buffer to hold the peer details is passed
reference (as an out parameter). The buffer size MUST
accept() [be specified in the addrlen parameter.
| ' CAVEAT: The addrlen parameter is in/fout! Before call,
read/recv specifies sizeof (struct sockaddr). After call, specifies
write/send how many bytes were actually used for address.
[Return: A NEW connected socket (>0)
close() or -1 (SOCKET_ERROR) on failure.

The accept() call is responsible for dequeuing a connection from the listen backlog. It usually
called when the

socket signals I/O pending (see select), but may be called any time, putting the process to
sleep until a request is received.

When accept returns, it returns a NEW socket, bound and connected to the remote address.
The original socket is left unchanged, in its listening state.

To obtain the remote address, the following code may be used:
char *remote_IP_Address = (char *) malloc (BUFSIZE);
inet_ntop(AF_INET, &peeraddr.sin_addr, remote_IP_Address, BUFSIZE);

int remote_Port = ntohs(peeraddr.sin_port);

printf (“Incoming: %s:%d requested connection”, remote_IP_Address, remote_Port);

109

Socket Programming — API Calls
Socket I/O
socket() #include <sys/socket.h>
I int send (int socket, /* as returned by accept() */
| const void *buffer, {* buffer with msg to send */
. size_t Ten, /* length of buffer */
bind() int flags); /* misc. options, usually 0 */
I Description: send a data to a connected socket.
listen()
I Parameters: A buffer holding the msg to send, of len
bytes. The msg will be encapsulated by any IP/TCP
accept() headers as required.
| Flags: An |'ed combination of flags, e.g.
MSG_OOB — Out Of Band (TCP OOB)
read/recv = ;
e MSG_DONTWAIT — Don’t block.
close() Return: # bytes sent (up to len bytes)
or -1 (SOCKET_ERROR) on failure.

The send function is used to send bytes. The function is responsible for encapsulating the
data sent in any IP and TCP headers, as well as fragmenting the data, if necessary.

The send operation is a blocking call — that is, the function will not return until the bytes are
sent. Should a

non-blocking mode of operation be required, use MSG_DONTWAIT as a flag. If the call would
block, the function will return SOCKET_ERROR, and errno will be EAGAIN/EWOULDBLOCK.

110

Socket Programming — API Calls

Socket I/0
socket() #include <sys/socket.h>
1 int recv (int socket, /* as returned by accept() */
| void *buffer, {* buffer with msg to send */
. size_t Ten, /* length of buffer */
bind() int flags); /* misc. options, usually 0 */
I Description: receive data from a connected socket.
listen()
Parameters: A buffer in which the msg will be received,
I of len bytes. The msg will be stripped of any IP/TCP
accept() headers.
| Flags: An |'ed combination of flags, e.g.
taadiiany MSG_PEEK — Receive, but do not dequeue.
e | MSG_OOB - Out Of Band (TCP OOB)
| MSG_DONTWAIT — Don’t block.
close() Return: # bytes received (up to len bytes)

or -1 (SOCKET_ERROR) on failure.

The receive function is used to receive bytes. The function returns the data, sans any IP and
TCP headers from the data obtained, as well returning the data reassembled.

The receive operation is a blocking call — that is, the function will not return until there are

bytes to receive. Should a non-blocking mode of operation be required, use MSG_DONTWAIT

as a flag. If the call would block, the function will return SOCKET_ERROR, and errno will be
EAGAIN/EWOULDBLOCK.

To determine if bytes are available, use the poll() or select() system calls.

111

Socket Programming — API Calls
Closing connections
socket() — #include <sys/socket.h>
i int close (int socket) ; 1* as returned by accept() */
bind Description: closes the socket. Remote peer receives
gy an EOF notification.
| It is also possible to use the shutdown() function:
listen()
I int shutdown (int socket, /* as returned by accept() */
int how) ; /* 0— SHUT_RD,
1 - SHUT_WR,
accept() [2 - SHUT_RDWR */
| Close is equivalent to shutdown(s,2).
Vzeri?:;rzi‘é Return: # bytes received (up to len bytes)
Is or -1 (SOCKET_ERROR) on failure.
close()

The close() function terminates the connection by closing the socket. The remote peer will
receive an EOF notification upon further reads/writes to the socket.

Should a half-duplex close be required, use shutdown(), instead.

112

Socket Programming — API Calls

Client-side Connection request

#include <sys/socket.h> —

int connect (int socket, ; /* as returned by socket() */
const struct sockaddr *remote, /*addrof remote host */
socklen_t addrlen); I* sizeof (*remote) =

Description: attempts to connect to remote host.

Return: 0 - on success (remote acceptgd) socket()
or -1 (SOCKET_ERROR) on failure. ~
possible failures (check errno)

] connect()
ETIMEDOUT — Connection timed out 1
ECONNREFUSED - Client sent RST
EHOSTUNREACH - ICMP Host Unreachable read/recv
ENETUNREACH — ICMP Net Unreachable write/send
close()

The connect() function attempts to establish a connection with the remote host. For the
AF_INET family, this means sending a TCP SYN to the remote host, and waiting for the
SYN/ACK to return.

If the SYN/ACK does not return within a specified timeout (usually 75 seconds), the function
fails, and errno is set to ETIMEDOUT.

If any ICMP messages are returned by the network as a result of the connection attempt,

errno is set to EHOSTUNREACH, or ENETREACH, for ICMP Host or Net Unreachable,
respectively.

113

Socket Programming
UDP Sockets

socket()
| UDP sockets are by far simpler to
. establish, but significant overhead is
ind0 required in send/recv operations (now
| carried out by sendto/recvfrom, instead
$ | of send/recv), due to the connectionless
recvirom
| nature of UDP.
close i .
The UDP Server can omit the listen and

accept operations. The client can further
simplify, as it need not even bind the
socket, but can send data right away.

114

Socket Programming

Client/Server interaction in UDP

socket()
|
bind()
L\: sendto/ socket()
recvfrom ‘
recvfrom()
sendto()
Note that operation is slightly different \
here, as the server socket is not close()
duplicated, and remains open regardless
of client.

Since the server did not listen and accept, the socket was NOT duplicated. Therefore one
socket serves all clients concurrently. It remains open even after client disconnection.

The server has to manage the client list itself, with each datagram containing the address of
the peer, obtained from the sockaddr *) struct.

115

Socket Programming — API Calls

Socket I/0
socket() — f'i nclude <sys/s_.ocket. h>
int recvfrom (int socket, I* as returned by accept() */
| void *buffer, 1* buffer with msg to send */
size_t len, /* length of buffer */
bind() int flags, /* misc. options, usually 0 *
const struct sockaddr *dest * Where to? */
| socklen_t tolen); /* sizeof (sockaddr)
{ sen;:ltol (sendto is defined similarly, though dest is not a const,
recvl 100 and tolen is an in/out (that is, socklen_t *) parameter.
close Description: send/recv data from unconnected sockets.

Parameters: Same as recv/send, respectively.
‘dest’ is a pointer to the destination host/port, as would
have been specified as an argument to connect().

Return: # bytes received (up to len bytes)
or -1 (SOCKET_ERROR) on failure.

Note that some flags (e.g. MSG_OOB) are not applicable for unconnected sockets.

Otherwise, the behavior of sendto() is nearly identical to send, and recv — to recvfrom().

116

Socket Programming — API Calls

I/0 Multiplexing functions

Send/Sendto and Recv/Recvto calls are blocking.
Meaning, the program is suspended from execution until
data is available, or ready to be written. This could be a
problem, especially with multiple concurrent connections.

#include <sys/time.h>
#include <sys/select.h>
#include <unistd.h>

int select (int n,

struct timeval {

s ety long tv_sec ; /* seconds .
fd:set *writefd;, long tv_usec; /* microsec. */
fd_set *exceptionfds, }

struct timeval *timeout);

Description: wait on file descriptors/sockets status change

FD_* macros may be used to add and remove sockets

FD_ZERO - clear set, FD_SET — add socket, FD_CLR — remove socket
FD_ISSET - is socket set in the set. Used to check socket for pending 1/0

Return: Count of ready descriptors, 0 on timeout, -1 on error.

Most applications perform 1/O Multiplexing. That is, reading and writing to multiple
descriptors, as well as doing other things, in between read/write operations.

Select/Pselect and Poll are used to check socket readiness for read/write operations.

On connected sockets, these calls detect available data, or TCP buffer space availability. On
listening sockets, these calls detect incoming connections (and thus, whether accept() may be
called).

On unconnected (UDP) sockets, these calls are particularly important, as data may come at
arbitrary intervals (or not come at all for a while..).

void FD_ZERO (fd_set *fdset); /* clear all bits in fdset */

void FD_SET (int fd, fd_set *fdset); /* turn on the bit for fd in fdset */
void FD_CLR (int fd, fd_set *fdset); /* turn off the bit for fd in fdset */
void FD_ISSET(int fd, fd_set *fdset); /* is the bit for fd on in the fdset? */

117

Socket Programming — API Calls

I/0 Multiplexing functions

mask signals.

POSIX.1.g defines pselect, which is a more fine-grained
version of the select() call, and includes an ability to

#include <sys/select.h>

#include <sys/types.h>

fd_set *writefds,

#include <unistd.h> struct timespec {
time_t tv_sec ; /¥ seconds
Int pselect (int n, long tv_nsec; /¥ nanosec. *
fd_set *readfds, ¥

fd_set *exceptionfds,
const struct timespec *timeout,
const sigset_t *sigmask);

enable signal masking.
Return: Count of ready descriptors, O on timeout, -1 on error.

Description: Same as select, but with nanosecond resolution, as well as

Example of using pselect’s signal handling:
sigset_t newmask, oldmask, zeromask;

sigemptyset(&zeromask) ; /* Set all signals to default */
sigemptyset(&newmask);
sigaddset(&newmask, SIGINT); /* tell pselect to return on SIGINT */
sigprocmask(SIG_BLOCK, &newmask, &oldmask); /* block SIGINT */
ready_descriptors = pselect (....... , &zeromask)) < 0) ;
If (ready_descriptors < 0)
{

if (errno == EINTR)

{

/*We were interrupted */

}

}

118

Socket Programming — API Calls

I/0 Multiplexing functions

Poll() is yet another alternative to select and pselect.

#include <poll.h>

struct pollfd {

int fd; /* descriptor */
short events; /* in */
short revents; /* out */

1

Int poll (struct pollfd *fdarray,
unsigned long nfds,
int timeout);

Description: The array of pollfd is an infout parameter. xdfs is maximum
Index of array.

The fdarray[i].events are I'ed constants. fdarray[i].revents will hold, upon
return, which events occurred for which descriptors.

Return: Count of ready descriptors, 0 on timeout, -1 on error.

Events:

POLLIN — Incoming Data (Normal or OOB)
POLLRDNORM — Incoming Normal Data
POLLRDBAND — Incoming OOB data
POLLPRI — High priority incoming data

POLLOUT | POLLWRNORM - Outgoing Normal Data may be written
POLLWRBAND — Priority data may be written

Also, for revents:
POLLERR — An error has occurred

POLLHUP — Hangup occurred
POLLNVAL — Descriptor is not an open file/socket

119

Socket Programming — API Calls

Byte ordering functions

Different architectures order bytes in different ways.

The [hn]to[nh][s]] functions deal with byte-ordering details.

4 3 2 1 #include <netinet/in.h>
uint_16_t htons (uintl6_t value) ;
-— uint_32_t htonl (uint32_t value) ;
uint_16_t ntohs (uintl6_t value) ;
memory uint_32_t ntonl (uint32_t value) ;
Big Endian

Description: Convert 16-bit (s) and 32-bit (1) values from

and to network byte ordering.
112 |3 | 4
Return: The value, in network byte ordering (hton), or
host byte ordering (ntoh).
memory
Little-Endian

When sending data across a network, you may not always encounter similar architectures
with your peers. (e.g. Intel x86 machines vs. Sparc servers).

In order for programs to be fully source code portable, it is recommended to ALWAYS use the
XtoYZ (X,Y — h,n, Z —s,l) functions. In cases where the host and network byte ordering

functions are identical, the functions are defined as null macros.

It is especially important to use these functions when constructing sockaddr_in structures
(htons() for sin_port, and htonl() for sin_addr).

120

Socket Programming — API Calls

DNS Lookups

The gethostbyXXX() functions resolve hostnames to IP addresses (and vice
versa) by /etc/hosts, DNS, NIS, LDAP, and other mechanisms.

#include <netdb.h>
struct hostent *gethostbyname (const char *hostname);

Description: Resolve hostname to IPv4.
Return: Host entry structure, by reference, or NULL. The preferred

method for
struct hostent {

char *h_name; resolution is '
char **h_aliases; /* Array of pointers to alias names (NULL term) */ usually defined in a
int h_addrtype; /* AF_INET */ system file (eg

int h_length; /* 4 (for IPv4) */ <
char **h_addr_list; /* array of addresses. (NULL terminated) */ /etc/psswntch.conf)
} and is transparent
to programs.
struct hostent *gethostbyaddr (const char *addr, /* actually, in_addr * */
size_t len, /* sizeof (in_addr) */
int family);

h_addr is #defined as h_addr_list[0];

The nsswitch.conf file is a table, specifying the order of resolvers. It is used for other
namespaces, as can be seen below:

Sample /etc/nsswitch.conf file:
namespaces: passwd, shadow, group, hosts, services, networks, rpc...

resolvers: nisplus, nis, dns, files, db (local database), hesiod (rare)..

hosts: dns files nisplus
passwd: nisplus [NOTFOUND-=return] files

While most systems use /etc/nsswitch.conf, AIX uses /etc/netsvc.conf. Digital UNIX uses
/etc/svc.conf.

DNS lookup is performed against the DNS specified in /etc/resolv.conf.

NOTE THIS FUNCTION IS NOT IPv6-Compatible!

121

Socket Programming — API Calls

Service/Port Lookups

The getservtbyXXX() functions resolve services, by employing the
/etc/services file. Well known port numbers for services may be thus found.

#include <netdb.h>
struct servent *getservbyname (const char *servicename,
const char *protocolname);

Description: Resolve service to IPv4 or IPv6 address.
Return: Service entry structure, by reference, or NULL.

struct servent {
char *s_name;
char **s_aliases; /* Array of painters to alias names (NULL term) */
int s_port; /* Service port, in network byte order */
int s_proto; /* protocol to use ~ */

b

struct servent *getservbyport (int port, /* port #, network byte order */
char *protocolname); /* “tcp”/"udp” */

Example Usage:
getservbyname (“domain”, “udp”);
getservbyport (htons(53), “udp”);

The following, however, will fail:

n u

getservbyname (“smtp”, “udp”);

122

Socket Programming — API Calls

Getting/Setting socket options

Many default options exist for sockets. These options
may be read, or set, by using the get/setsockopt
functions.

#include <sys/socket.h>

int getsockopt (int s,
int level, /% option “family”/
int optname, /* option “name” const*/
void *optval, /* buffer to hold value */
socklen_t *optnlen); /* buffer len */

int setsockopt (int s,
int level, /* option “family”/
int optname, /* option “name” const*/
void *optval, /* buffer to hold value */
socklen_t optnlen); /* buffer len */

Description: Get or set socket options.
Level specifies option space. Optname specifies option.

Return: 0, or-1 (SOCKET_ERROR) on error.

Level may be: SOL_SOCKET, SOL_RAW, IPPROTO_IP, IPPROTO_TCP, IPPROTO_IPV®, etc.
Option names may be found by looking through the man pages. The next page shows the
commonly used ones.

123

Socket Programming — API Calls

Setting Socket options

Below are but a few of the many configurable options:

Generic Socket Options: (SOL_SOCKET)
SO_BROADCAST: enable/disable ability to get/send broadcast datagrams

SO_TYPE: (get only) return socket type (SOCK_STREAM, DGRAM, etc.)
SO_REUSEADDR: Bind same Tlocal port to different applications.

SO_RCVBUF: Get/set the maximum receive buffer, in bytes.

SO_SNDBUF: Get/set the maximum send buffer, in bytes.

SO_KEEPALIVE: send TCP keepalive probe every two hours.

SO_LINGER: block close/shutdown until pending data is sent or timed out.
SO_RCVTIMEO: Get/set the maximum receive timeout (invalid in Linux)
SO_SNDTIMEO: Get/set the maximum send timeout (invalid in Linux)

IPv4 Socket Options: (IPPROTO_IP)

IP_HDRINCL: For raw sockets, do not add IP Header

IP_OPTIONS: Set miscellaneous IPv4 options, e.g. Source/Record Route.
IP_TOS: IP Type of Service field for outgoing data (IPTOS_[LOWDELAY|LOWCOST|THROUGHPUT)
IP_TTL: Get/Set the IP TTL field in the IP Header.

TCP Socket Options: (IPPROTO_TCP)
TCP_KEEPALIVE: Change keepalive (SO_KEEPALIVE) period from 7200 seconds.

TCP_NODELAY: Disable Nagle Algorithm, and send immediately.
TCP_MAXSEG: Maximum segment size.

SO_REUSEADDR: Rebinding a socket even if a connection is already established on it,
rebinding the same port on different interfaces, or even allowing duplicate bindings on UDP
& Multicast sockets.

Linux adds quite a few IP and generic socket options, which are specified in ip(7) and
socket(7), respectively.

Linux also adds a useful ICMP_FILTER option (level: SOL_RAW), to filter ICMP packets from
other raw data.

124

