
101

102

103

104

105

The socket() system call is used to create the local endpoint for communications. The socket
may be associated with any one of the myriad address or protocol families. (Some UNIXes go
with the AF_xxx constants – others (e.g. Linux) use PF_xxx). Both are defined to be equal.

Once a family is specified, a type must be selected. The types are defined as per the
communication semantics required. That is:

SOCK_STREAM: Reliable, two way, connection based byte stream. For IP type sockets, this
is usually TCP.

SOCK_DGRAM: Unreliable and connectionless per-packet datagram delivery (For IP: UDP)
SOCK_RAW: Unspecified Layer III and Layer IV protocols : Sender must construct IP and

above headers.

SOCK_RAW is usually used in programs that need to construct ICMP packets, and/or in
network sniffers.

The protocol field may usually be left at 0, but a specific protocol may be requested using
getprotoent().

106

Once the socket has been successfully created, the next step is to bind it to some local
address. This readies the local port, and associates it with the applications. This step is NOT
required for a client, but is mandatory for a server.

Initializing the sockaddr struct:

int server_port = 2410 ; /* or any port you wish… */
int socket_descriptor = socket(AF_INET, SOCK_STREAM,0)
struct sockaddr_in local;

memset(&local, ‘\0’, sizeof(local));
local.sin_family = AF_INET;
local.sin_addr.s_addr = htonl (INADDR_ANY) /* Use any interface */
local.sin_port = htonl(server_port);

bind (socket_descriptor, (struct sockaddr *) &local, sizeof(local));

Unless explicitly requested otherwise, only one application may bind to a specific port at any
given time. It is thus always important to check bind’s return value. If it is -1, check errno.

EADDRINUSE: “Address already in use” – someone else got to bind the socket first.
EBADF/ENOTSOCKET: “Bad file descriptor”/”not a socket” – The 1st parameter was not
created with a call to socket()
EINVAL: Socket is already bound.

107

It is important to set the backlog parameter to a correct value. If the backlog limit of

connection requests is met, and none is processed (by accept()), any further connection

request will be refused (TCP RST) by the server.

108

The accept() call is responsible for dequeuing a connection from the listen backlog. It usually

called when the

socket signals I/O pending (see select), but may be called any time, putting the process to

sleep until a request is received.

When accept returns, it returns a NEW socket, bound and connected to the remote address.

The original socket is left unchanged, in its listening state.

To obtain the remote address, the following code may be used:

char *remote_IP_Address = (char *) malloc (BUFSIZE);

inet_ntop(AF_INET, &peeraddr.sin_addr, remote_IP_Address, BUFSIZE);

int remote_Port = ntohs(peeraddr.sin_port);

printf (“Incoming: %s:%d requested connection”, remote_IP_Address, remote_Port);

109

The send function is used to send bytes. The function is responsible for encapsulating the

data sent in any IP and TCP headers, as well as fragmenting the data, if necessary.

The send operation is a blocking call – that is, the function will not return until the bytes are

sent. Should a

non-blocking mode of operation be required, use MSG_DONTWAIT as a flag. If the call would

block, the function will return SOCKET_ERROR, and errno will be EAGAIN/EWOULDBLOCK.

110

The receive function is used to receive bytes. The function returns the data, sans any IP and

TCP headers from the data obtained, as well returning the data reassembled.

The receive operation is a blocking call – that is, the function will not return until there are

bytes to receive. Should a non-blocking mode of operation be required, use MSG_DONTWAIT

as a flag. If the call would block, the function will return SOCKET_ERROR, and errno will be

EAGAIN/EWOULDBLOCK.

To determine if bytes are available, use the poll() or select() system calls.

111

The close() function terminates the connection by closing the socket. The remote peer will

receive an EOF notification upon further reads/writes to the socket.

Should a half-duplex close be required, use shutdown(), instead.

112

The connect() function attempts to establish a connection with the remote host. For the

AF_INET family, this means sending a TCP SYN to the remote host, and waiting for the

SYN/ACK to return.

If the SYN/ACK does not return within a specified timeout (usually 75 seconds), the function

fails, and errno is set to ETIMEDOUT.

If any ICMP messages are returned by the network as a result of the connection attempt,

errno is set to EHOSTUNREACH, or ENETREACH, for ICMP Host or Net Unreachable,

respectively.

113

114

Since the server did not listen and accept, the socket was NOT duplicated. Therefore one

socket serves all clients concurrently. It remains open even after client disconnection.

The server has to manage the client list itself, with each datagram containing the address of

the peer, obtained from the sockaddr *) struct.

115

Note that some flags (e.g. MSG_OOB) are not applicable for unconnected sockets.

Otherwise, the behavior of sendto() is nearly identical to send, and recv – to recvfrom().

116

Most applications perform I/O Multiplexing. That is, reading and writing to multiple

descriptors, as well as doing other things, in between read/write operations.

Select/Pselect and Poll are used to check socket readiness for read/write operations.

On connected sockets, these calls detect available data, or TCP buffer space availability. On

listening sockets, these calls detect incoming connections (and thus, whether accept() may be

called).

On unconnected (UDP) sockets, these calls are particularly important, as data may come at

arbitrary intervals (or not come at all for a while..).

void FD_ZERO (fd_set *fdset); /* clear all bits in fdset */

void FD_SET (int fd, fd_set *fdset); /* turn on the bit for fd in fdset */

void FD_CLR (int fd, fd_set *fdset); /* turn off the bit for fd in fdset */

void FD_ISSET(int fd, fd_set *fdset); /* is the bit for fd on in the fdset? */

117

Example of using pselect’s signal handling:

sigset_t newmask, oldmask, zeromask;

sigemptyset(&zeromask) ; /* Set all signals to default */

sigemptyset(&newmask);

sigaddset(&newmask, SIGINT); /* tell pselect to return on SIGINT */

sigprocmask(SIG_BLOCK, &newmask, &oldmask); /* block SIGINT */

ready_descriptors = pselect (……., &zeromask)) < 0) ;

If (ready_descriptors < 0)

{

if (errno == EINTR)

{

/*We were interrupted */

}

}

118

Events:

POLLIN – Incoming Data (Normal or OOB)

POLLRDNORM – Incoming Normal Data

POLLRDBAND – Incoming OOB data

POLLPRI – High priority incoming data

POLLOUT | POLLWRNORM – Outgoing Normal Data may be written

POLLWRBAND – Priority data may be written

Also, for revents:

POLLERR – An error has occurred

POLLHUP – Hangup occurred

POLLNVAL – Descriptor is not an open file/socket

119

When sending data across a network, you may not always encounter similar architectures

with your peers. (e.g. Intel x86 machines vs. Sparc servers).

In order for programs to be fully source code portable, it is recommended to ALWAYS use the

XtoYZ (X,Y – h,n, Z – s,l) functions. In cases where the host and network byte ordering

functions are identical, the functions are defined as null macros.

It is especially important to use these functions when constructing sockaddr_in structures

(htons() for sin_port, and htonl() for sin_addr).

120

h_addr is #defined as h_addr_list[0];

The nsswitch.conf file is a table, specifying the order of resolvers. It is used for other

namespaces, as can be seen below:

Sample /etc/nsswitch.conf file:

namespaces: passwd, shadow, group, hosts, services, networks, rpc…

resolvers: nisplus, nis, dns, files, db (local database), hesiod (rare)..

hosts: dns files nisplus

passwd: nisplus [NOTFOUND=return] files

While most systems use /etc/nsswitch.conf, AIX uses /etc/netsvc.conf. Digital UNIX uses

/etc/svc.conf.

DNS lookup is performed against the DNS specified in /etc/resolv.conf.

NOTE THIS FUNCTION IS NOT IPv6-Compatible!

121

Example Usage:

getservbyname (“domain”, “udp”);

getservbyport (htons(53), “udp”);

The following, however, will fail:

getservbyname (“smtp”, “udp”);

122

Level may be: SOL_SOCKET, SOL_RAW, IPPROTO_IP, IPPROTO_TCP, IPPROTO_IPV6, etc.

Option names may be found by looking through the man pages. The next page shows the

commonly used ones.

123

SO_REUSEADDR: Rebinding a socket even if a connection is already established on it,

rebinding the same port on different interfaces, or even allowing duplicate bindings on UDP

& Multicast sockets.

Linux adds quite a few IP and generic socket options, which are specified in ip(7) and

socket(7), respectively.

Linux also adds a useful ICMP_FILTER option (level: SOL_RAW), to filter ICMP packets from

other raw data.

124

