
CMSC420 Glossary

asymptotic
complexity
analysis

for data structures, it’s the assessment of the rate of change of either the execution time
or the storage requirements, usually as the problem size grows without bound. since time
and space are not expected to decrease as the number of elements increases, we expect
the functions involved in the analysis to be positive increasing (or at worst monotonic
non-decreasing). that allows us to use the weaker version of the definitions of the bounds
given in this glossary (as in NO limit notation required).

non-data-structures specific:
investigation of the rate of change of some measure associated with a program or algorithm
with respect to a distinguished parameter, when that parameter is allowed to grow without
bound. (don’t waste your time memorizing this version...just understand what it means).

AVL tree BST with the additional rule that the heights of the subtrees of any node in the tree differ by
at most one. Insertion follows BST rules, and then applies either a single or a double rotation
to restore AVL tree property as needed. Deletion follows BST rules–finding replacement
node and reestablishing the height difference rule can require more than a constant number
of rotations; so, lazy delete is often used. Goal is search in O(logn). Visit Dave Mount’s
notes for more details.

binary heap a complete (or left complete) binary tree where the value in the root of every subtree is no
greater than the values in its child nodes (for a min heap); or the value in the root of every
subtree greater than or equal to the values in its child nodes (for a max heap)

Typically stored in a static array in C or C++ to exploit known (fast) access func-
tion and make rebuilding the heap fast.

access function: node at index i has its left child at 2i + 1 and its right child at
2i+ 2.

used as the basis for a priority queue.

BST disease this is a DHD (Darth Hugue detail). It refers to that quality of a BST where the insertion
order is such that all non-leaf nodes have at most one non-empty child, and search is in
O(n), just like for a nasty linked list.

Commentary:
Why is this not ’linked list disease’?
Because linked lists can’t improve their perfomance by reordering the nodes. unsuccessful
search is in O(n) whether the elements are sorted or not. Thus, O(n) is the way it is.

In the average case, indeed, a BST has search in O(logn)...it’s merely the size of the
constants forcing one to require larger and larger values of n, the number of elements
to begin to observe the log-like behavior. However, by manipulating the order of data
insertion, or the rules regarding relationships between parent and child nodes, the depth of
the structure can be manipulated to guarantee that search is in O(logn).

Thus, if a k-ary tree node had at most one non-empty child node, then k − 1 link
spots would be wasted and search would be in O(logn)...thus all behave like a BST. The
disease is not fatal, but can be rectified by adding a rule (such as limiting the height
differences among children of a node) that forces the max depth to be proportional to logn,
the number of element in the strucure.

1

BST
Property

a binary tree in which each node contains a key satisfies the BST (binary search tree)
property if and only if for every node in the structure, the values of the keys in the node’s
left subtree are less than the node’s key, and the values of the keys in the node’s right
subtree are “greater than or equal to” the node’s key.

Notes:
a) “greater than or equal to” is in quotes because most authors don’t include ’equal’
anywhere in this definition because the definition is usually made because keys are assumed
to be unique. however, there are situations, such as in the k-d tree (which will appear
probably thursday), where we need to know which way ’equal’ goes.

b) the choice of which side gets the ’equal’ (left or right) is technically a conven-
tion....as in, the resulting binary search tree will be unique as long as everyone puts ’equal’
on the right. so, for our class, we will have ’the key in the current node less than or equal
to the keys in the right subtree of the node’ to make sure that there is no ambiguity in the
structures you consult.

c) the generalization of the BST is the K-ary Search Tree (KST) property, which we
will use in discussing the point quadtree (the 2-dimensional analog of a BST).

complete
k-ary tree

a complete k-ary tree is full with all leaves on the same level. if you add one more node you
have to add another level.

alternate characterizations of complete k-ary trees:
a) a k-ary tree in which all nodes have k-non empty children except for the last level, where
all nodes have k empty children.

b) a full k-ary tree where all the leaves are at the same level

c) a full k-ary tree where every level is maximal, and no other nodes can be added
without increasing the number of levels in the tree

Commentary:
note that these are used for binary heaps (d-ary heaps) to ensure that they can be
stored in static arrays without requiring a symbol for an ’empty’ node. typically, storage
is reserved for a complete k-ary tree, and then the structure may cycle through left
complete/complete/left complete/complete as information is removed from the binary heap.

d heap similar to a binary heap but it is a complete (or left complete) d-ary tree where either:
a) max heap: the key in the root of each subtree is greater than or equal to the keys in its
child nodes;

or

b) min heap; the key in the root of each subtree is less than or equal to the keys in
its child node.

2

darth
hugue
details
(DHD)

a phrase that will be used to imply a more complex set of concepts, even if no one else
uses it. For example “BST disease” is what i use to refer to any structure that has the
same property as the bst of having the shape of the structure determined by the order of
element insertion, and therefore the worst case is an expensive linked list, where the nodes
can have k spaces reserved for expansion or child nodes, but only one is ever non empty
for the non-leaf nodes. I don’t call it linked list disease, becausee manipulating the shape
of a linked list is impossible, and linked list disease is fatal, while a k-ary tree’s shape can
be manipulated by element insertion order, and can thus can be accomodated by adding
rules to how information is inserted into the structure to the basic BST (KST) property
that determine the ’natural’ or inherent information orderings that are provided by the mere
navigation structure.

depth of a
node in a
k-ary tree

the depth the root is zero; the depth of a node is one plus the depth of its parent. Note that
this is also the level label. Alternatively, the depth of a node in a k-ary tree is the number
of edges in the path from the node to the root.

Dynamic
data set

refers to the fact that either the number of elements, the values of the keys stored therein,
or both are expected to vary throughout the program/application life cycle.

extended
k-ary tree

this is a k-ary tree, where the internal nodes are different than the external or leaf nodes.
internal nodes have space for k children, and must have at least one nonempty child. leaf
nodes have space only for keys (data) and reserve no space for children. why? because
they truly have no children. Alternatively, an extended k-ary tree is a k-ary tree where
the extenders correspond to the empty child pointers, but can also point to another object.
By construction, all extended k-ary trees are full. this makes keeping track of how much
overhead is needed to support the data structure easy to compute, and does

In an extended k-ary tree, the internal nodes all have at least one non empty child.
However, a 2nd kind of node, called an extender, is used to indicate the presence of a child
pointer...or potential child pointer.

Commentary:
What’s the difference? All the internal nodes contain space for pointers to k children, as
well as some type of information to guide the choice–sometimes this information is stored
in the internal node explicitly; however, most often, a predefined rule is used to determine
the correct searh path; so no space or minimal space can be devoted to supporting the
branching. Internal nodes are never converted to leaf nodes. They may be deleted, but will
never contain a real key. The external nodes will always be external nodes, but can devote
all their storage to keys.

3

external
node

used to refer to leaf node of many structures, most commonly, k-ary trees, where an ex-
ternal node has k empty children. Also used for k-ary tries, where leaf nodes have no children.

Commentary:
What’s the difference between “empty chidren” and “no children”?
Empty children means that the external node is allocated with space for expansion; that is,
given the way the structure is managed, external or leaf nodes become internal nodes when
their (empty) children are instantiated. The purpose of the definition is not to annoy but
to capture the function or management of the nodes with no ‘out arcs’. No children means
that no space must be allocated for kids because the leaf is terminal–it will never become
an internal node; this is what happens in tries.

Commentary 2:
The goal of all these definitions is to capture the manner in which the notions of finite
graphs and their representations are instantiated on a computer–not merely to annoy you.

forest of
general trees

is one or more general trees.

full k-ary
tree

a) a k-ary tree in which all internal nodes have k non-empty children.

b) a finite set of elements that is either empty or consists of a root and k empty
children, or a root and k non-empty disjoint subsets, each of which is a full k-ary tree.

(this combines both definitions–k-ary tree and full, and is not appropriate for just a
‘full’ structure).

full k-ary
tree theorem

in a full k-ary tree, the number of external nodes (E) satisfies: E = (k− 1)I + 1, where I is
the number of internal nodes.

full k-ary
tree theorem
corollary

any k-ary tree with n nodes has P = (k − 1)n+ 1 empty child pointers.

general tree a general tree is a finite set of elements that consists of a root and zero or more disjoint
subsets, each of which is a general tree.

Note: general trees can’t be empty. Why not?.

4

Graph,
G(V,E)

a graph consists of a finite set of vertices, V , and a set of edges, E, where G(V,E) edge
< vi, vj > connects vi to vj, for i 6= j. Data structures might be referred to as a study of
finite graphs and the associated algorithms–their properties, their applicability, and when
NOT to use them ;-)

Graph commentary:
in data structures, all graphs are finite–meaning that the vertex set has some (finite)
cardinality (number of elements), with |V | = n.

While our calculations will assume that n approaches infinity–especially to assess
scalability of graph-specific algorithms in terms of time and space–we always treat n as a
finite integer that can be permitted to grow to be arbitrarily large. But, it remains finite.

As an example, even though we have a finite number of elements in our set, if the
set is so big that we can’t fit all the keys in ‘main memory’ and do actual work, then we
have to use what are called ‘external sorting methods.’ Otherwise, we use ‘internal sorting
methods’.

Graph,
sparse

a graph is sparse if the number of edges for n vertices is in O(n).

height of a
k-ary tree

the height of a k-ary tree is often defined as the number of nodes on the unique path between
the root and a node whose level has the largest label. Check Dave Mount’s notes to see what
he uses.

Huffman
coding tree

trie used to encode and decode symbols to produce a variable length encoding in which the
frequency of a given symbol is roughly inversely proportional to the length of the code for
a given symbol. Symbols occur at the leaves, and the method used to construct the tree
guarantees that weighted path length associated with the binary tree is minimized (where the
weight of a symbol corresponds to its frequency in training data or in a file to be compressed).

internal
node

typically associated with trees, but valid for a graph, refers to any node that is not an
external (or leaf) node.

For a k-ary tree, any node that has at least one non-empty child.

internal nodes of k-ary trees and k-ary tries have to be allocated with space for child
nodes. however, k-ary tree internal nodes start life as leaves of the k-ary tree. k-ary trie
internal nodes never change their role.

(just a note to remind you that when we traverse structures we exploit the connec-
tivity of the structure (list, tree, or graph) as well as the relationships among the values
stored therein).

k-ary tree a finite set of elements that is either empty or consists of a root and k disjoint subsets, each
of which is a k-ary tree.

5

k-d tree
(of order p)

a k-d tree is a BST used to organize p−dimensional keys; a binary search tree property is
supported, except that the portion of the key that is used to determine branch decisions at
each level rotates through the p coordinate positions. The term ‘key discriminator’ is often
used for the process that extracts the appropriate coordinate value from the p−dimensional
coordinate.

k-way search
tree

a k-ary tree in which every node can hold keys (or valid data or value– your choice of term),
and a k-way decision is made according to the k-ary (binary) search tree property.

Commentary:
If one implements this structure with external nodes and internal nodes having the same
content–as in space for k child pointers, and the key(s) to be used in determining which
child to explore—every leaf node will waste the space for k child pointers. since a p+1 level
k-way search tree will have a maximum of kp external nodes, that’s k empty kids each,
giving kp+1 empty child pointer slots.

This motivated the development of a different computational model, where the inter-
nal nodes served only as holders for guide values, and the keys are all in the “leaves” which
correspond to the child pointers that are actually used.

k-way search
trie

an extended k-ary tree in which the keys are all stored in the leaves (external nodes or
extenders) and the internal nodes are used to facilitate search to the appropriate leaf. The
values (guides associated with internal nodes, and keys associated with the leaf nodes) must
satisfy the k-way search tree property, as well.

left complete
k-ary tree

a left complete k-ary tree is complete, except for the last level, where nodes are filled in
from left to right. After the last node there are no more non-empty nodes to the right.

Commentary:
Note that these are used for binary heaps (d-ary heaps) to ensure that they can be stored
sequentially in static arrays without requiring a symbol for an ‘empty’ node. Typically,
storage is reserved for a complete k-ary tree, and then the structure may cycle through left
complete/complete/left complete/complete as information is removed from the heap.

level of a
k-ary tree

the level of the root is zero; the level of a node is one plus the level of the parent. Note that
by agreement, the empty k-ary tree has level numbered −1.

Warning: a k-ary tree with only a root has ONE level, which is labelled ‘0’. A k-
ary tree with a two nodes, a root and one child, has TWO levels, which are labelled ‘0’ for
the root, and ‘1’ for the child of the root. Be careful.

list a finite set of elements or finite connected graph G(V,E), where each element can be
involved in edges with at most two other nodes.

look! look! That means that the number of edges is proportional to the number of
vertices, as in |E| = c|V | for some constant c > 0. So, the number of edges grows linearly
with respect to the number of vertices.

Typically, in data structures, a list is considered to be a connected graph, where the
edges model some relationship between either the nodes as stored (merely the shape or
syntax or underlying structure) or the information (semantics or relationships among keys)
they hold.

6

node types
in tries and
trees

more darth hugue details (dhd)

for a graph, an internal node has at least one outgoing arc that is non- empty. note
too, that our trees have the assumption of being directed graphs, because a k-ary tree node
has exactly one parent, except for the root. so, a non-root internal node of a k-ary tree can
be thought of as an element of a directed graph having at most one incoming arc or parent
and at least one out going arc, or non-empty child.

These annoying comments are supposed to help some of you think. Why?
Because if all the nodes in my structure maintain the same type (internal, external)
throughout their life time, then a natural way to write code is to exploit the commonality
associated with treating each node as being a node in the structure. this makes the common
case fast, since all internal nodes of trees or tries serve as guides to the leaves (using the
values in internal nodes).

then, once each node has done the ‘stuff we do because we are nodes’, the “stuff we
do because we are ‘type x’ ” nodes can be separated from the general case, and treated
accordingly. This should make sense becaue the nodes have two roles: contain data, and
facilitate navigation through the data set.

Thus, any language or process accessing the graph should remember to exploit both
sets of attributes.

example? the BST can support six different output patterns from one arrangement
of nodes...(inorder, pre order, post order, reverse in order, reverse pre order, reverse post
order) A linked list can support two–forwards and backwards; however the cost of the two
is paid in space–either staticallly or dynamically.

so code that can exploit the connections –the logical or physical path through the
node set (captured in whether the node is a root, or a non-root internal or external node.

Ordered List if we can distinguish the first, 2nd, 3rd, and so on element of the list, the positioning in the
list imparts an ORDER on its elements that is independent of the keys. This is in contrast
to a sorted list, where the ordering of elements of the list is based on the relationships among
the keys present in the list.

Ordered
Tree

a tree in which the relative position of subtrees matters. Typically associated with k-ary
trees, but can also be applied to general trees.

Oriented
Tree

a tree in which relative order of subtrees is unimportant–only the parent/child and sib-
ling/sibling relationships matter. Typically associated with general trees or rooted trees.

perfect k-ary
tree

DEPRECATED! See the definition for COMPLETE instead.

a) a k-ary tree in which all nodes have k-non empty children except for the last
level, where all nodes have k empty children.

b) a full k-ary tree where all the leaves are at the same level

c) a full k-ary tree where every level is maximal, and no other nodes can be added
without increasing the number of levels in the tree.

7

Planar
Graph

a graph in which edges intersect only at vertices.

PM
Quadtree

(extended) 4-ary tree and 4-way search trie used to represent polygonal maps, with
predefined partitioning of potential key-space, all quadrants closed on all 4 sides, and all
keys in the leaves. PM3, PM2, PM1 determined by rules for legal black (key-holding) nodes.
Data consists of edges that intersect only at vertices, with each black node containing at
most one vertex.

PM3: additionally, a black node can contain any number of q-edges, where a q-edge
is a portion of a segment in a quadtree restricted to that partition.

PM2: all q-edges in a partition must intersect in a common vertex, either within the
quadrant, or outside of it.

PM1: at most one q-edge per black node, unless the black node contains a vertex, in
which case only q-edges that include that vertex can be in the black node.

point
quadtree
(k-ary tree)

a point quadtree or point octree or point k-ary tree is a structure used to support search for
2D, 3D, and larger tuples. So, a point quadtree would be used for (x, y) coordinates; point
octree for (x, y, z) coordinate data. These are also k-way search trees, and inherit lovely
BST disease, when they satisfy the KST (k-ary search tree property) and have keys in all
the nodes. The trigger word here is Point .

point region
quadtree

this is a trie–the key word is Region. It’s an extended 4-ary tree, and a 4-way search trie,
where the internal nodes correspond to predefined partitions (typically powers of two, with
smallest partition being 1× 1, perhaps corresponding to a pixel) and serve as guides to the
keys that are stored in leaves. internal nodes are called gray nodes; external nodes are called
black nodes. note that at most one key can occupy a given PR quadtree leaf. furthermore,
traditionally, PR quadtree quadrants are closed on the left and bottom. Furthermore, it
must be maximal, meaning that no excess partitions remain after a delete–any unneeded
gray nodes must collapse to correspond to the partitioning appropriate for the vertices that
remain after the deletion.

priority
queue

a list from which elements are removed according to a predefined rank.

q-edge refers to that portion of a line segment that is clipped or restricted by a partition of a PM
quadtree.

skiplist (also randomized skip list)

this is a probabilistic structure based on a linked list, but with several levels of links
to support navigation that is technically O(n), but the expected value is big-oh(log n).
number of links per element is determined at insertion time based on a random number
generator. The average number of links per node is 2, and the storage requirements are
about that for an AVL tree. Complexity of programs is about that of linked list insertion
and deletion–merely a few more links.

8

Sorted list a list where the relative positions of keys are determined by applying a rule that compares
keys pairwise, and outputs them according to some predefined ranking. So, perhaps a better
way to think of it is as a list where the position of the element or node in the list corresponds
to the rank of the key when sorted. This is in contrast to an Ordered list, where no such
rule is applied.

Sparse
Graph

a graph where the number of edges is proportional to a constant times the number of vertices.

Sparse
Matrix

a 2-dimensional array where the number of non-zero entries is proportional to the row or
column size, not the number of entries in the matrix. For a sparse n×n matrix, that means
that at most some (positive) constant cn of the n2 total entries are non-zero. Note that the
adjacency matrices associated with sparse graphs are also sparse.

static data
set

the number of keys and their values are known at run time, and remain unchanged.

Note: One can have a fixed-size data set, but allow key modification. Similarly, one
can have fixed-key values, but allow the number of times they are instantiated to vary
and therefore the number of elements to change at runtime. Both of these cases have to
be handled using methods which support dynamic behavior for the appropriate parameter
(number of elements or values of keys).

Tree 1) (Samet) a branching structure between nodes.

2) a general term for a finite, connected non-empty graph G(V,E), where each node
or vertex, except for one distinguished vertex, called the ‘root’, has a single parent vertex.
The root has no parent vertex.

look! look! The size of the edge set satisfies |E| = c|V | for some constant c > 0,
meaning that the number of edges grows linearly with the addition of new vertices.

Note: In previous semesters, the unadorned word ‘tree’ was never used in a technical
or formal sense in this data structures class. The main reason it was here was so I could
write the paragraph above that says “look! look!”–this has now changed. That is, the term
‘tree’ is now eligible for use in a valid definition on the 2nd exam and on the final.

9

